- 相關(guān)推薦
小學(xué)數(shù)學(xué)應(yīng)用題類型
導(dǎo)語:應(yīng)用題是指將所學(xué)知識應(yīng)用到實(shí)際生活實(shí)踐的題目。在數(shù)學(xué)上,應(yīng)用題分兩大類:一個是數(shù)學(xué)應(yīng)用。另一個是實(shí)際應(yīng)用。數(shù)學(xué)應(yīng)用就是指單獨(dú)的數(shù)量關(guān)系,構(gòu)成的題目,沒有涉及到真正實(shí)量的存在及關(guān)系。實(shí)際應(yīng)用也就是有關(guān)于數(shù)學(xué)與生活題目。以下是小編整理小學(xué)數(shù)學(xué)應(yīng)用題類型匯總,以供參考。
小學(xué)數(shù)學(xué)應(yīng)用題類型 篇1
一、簡單應(yīng)用題
只含有一種基本數(shù)量關(guān)系,或用一步運(yùn)算解答的應(yīng)用題,通常叫做簡單應(yīng)用題。
1、加法應(yīng)用題:
a求總數(shù)的應(yīng)用題:已知甲數(shù)是多少,乙數(shù)是多少,求甲乙兩數(shù)的和是多少。
b求比一個數(shù)多幾的數(shù)應(yīng)用題:已知甲數(shù)是多少和乙數(shù)比甲數(shù)多多少,求乙數(shù)是多少。
2、減法應(yīng)用題:
a求剩余的應(yīng)用題:從已知數(shù)中去掉一部分,求剩下的部分。
b求兩個數(shù)相差的多少的應(yīng)用題:已知甲乙兩數(shù)各是多少,求甲數(shù)比乙數(shù)多多少,或乙數(shù)比甲數(shù)少多少。
c求比一個數(shù)少幾的數(shù)的應(yīng)用題:已知甲數(shù)是多少,乙數(shù)比甲數(shù)少多少,求乙數(shù)是多少。
3、乘法應(yīng)用題:
a求相同加數(shù)和的應(yīng)用題:已知相同的加數(shù)和相同加數(shù)的個數(shù),求總數(shù)。
b求一個數(shù)的幾倍是多少的應(yīng)用題:已知一個數(shù)是多少,另一個數(shù)是它的幾倍,求另一個數(shù)是多少。
4、除法應(yīng)用題:
a把一個數(shù)平均分成幾份,求每一份是多少的應(yīng)用題:已知一個數(shù)和把這個數(shù)平均分成幾份的,求每一份是多少。
b求一個數(shù)里包含幾個另一個數(shù)的應(yīng)用題:已知一個數(shù)和每份是多少,求可以分成幾份。
C 求一個數(shù)是另一個數(shù)的的幾倍的應(yīng)用題:已知甲數(shù)乙數(shù)各是多少,求較大數(shù)是較小數(shù)的幾倍。
d已知一個數(shù)的幾倍是多少,求這個數(shù)的應(yīng)用題。
5、常見的數(shù)量關(guān)系:
總價 = 單價×數(shù)量
路程 = 速度×?xí)r間
工作總量=工作時間×工效
總產(chǎn)量=單產(chǎn)量×數(shù)量
二、復(fù)合應(yīng)用題
有兩個或兩個以上的基本數(shù)量關(guān)系組成的,用兩步或兩步以上運(yùn)算解答的應(yīng)用題,通常叫做復(fù)合應(yīng)用題。
1、含有三個已知條件的兩步計算的應(yīng)用題。
求比兩個數(shù)的和多(少)幾個數(shù)的應(yīng)用題。
比較兩數(shù)差與倍數(shù)關(guān)系的應(yīng)用題。
2、含有兩個已知條件的兩步計算的應(yīng)用題。
已知兩數(shù)相差多少(或倍數(shù)關(guān)系)與其中一個數(shù),求兩個數(shù)的和(或差)。
已知兩數(shù)之和與其中一個數(shù),求兩個數(shù)相差多少(或倍數(shù)關(guān)系)。
3、連乘連除應(yīng)用題。
4、三步計算的應(yīng)用題。
三、典型應(yīng)用題
具有獨(dú)特的結(jié)構(gòu)特征的和特定的解題規(guī)律的復(fù)合應(yīng)用題,通常叫做典型應(yīng)用題。
1、平均數(shù)問題:平均數(shù)是等分除法的發(fā)展。
解題關(guān)鍵:在于確定總數(shù)量和與之相對應(yīng)的總份數(shù)。
算術(shù)平均數(shù):已知幾個不相等的同類量和與之相對應(yīng)的份數(shù),求平均每份是多少。
數(shù)量關(guān)系式:數(shù)量之和÷數(shù)量的個數(shù)=算術(shù)平均數(shù)。
加權(quán)平均數(shù):已知兩個以上若干份的平均數(shù),求總平均數(shù)是多少。
數(shù)量關(guān)系式 (部分平均數(shù)×權(quán)數(shù))的總和÷(權(quán)數(shù)的和)=加權(quán)平均數(shù)。
差額平均數(shù):是把各個大于或小于標(biāo)準(zhǔn)數(shù)的部分之和被總份數(shù)均分,求的是標(biāo)準(zhǔn)數(shù)與各數(shù)相差之和的平均數(shù)。
數(shù)量關(guān)系式:(大數(shù)-小數(shù))÷2=小數(shù)應(yīng)得數(shù)
最大數(shù)與各數(shù)之差的和÷總份數(shù)=最大數(shù)應(yīng)給數(shù)
最大數(shù)與個數(shù)之差的和÷總份數(shù)=最小數(shù)應(yīng)得數(shù)。
例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小時 60 千米的速度從乙地開往甲地。求這輛車的平均速度。
分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設(shè)為“ 1 ”,則汽車行駛的總路程為“ 2 ”,從甲地到乙地的速度為 100 ,所用的時間為 ,汽車從乙地到甲地速度為 60 千米 ,所用的時間是 ,汽車共行的時間為 + = , 汽車的平均速度為 2 ÷ =75 (千米)
2、歸一問題:已知相互關(guān)聯(lián)的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。
根據(jù)求“單一量”的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。
根據(jù)球癡單一量之后,解題采用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。
一次歸一問題,用一步運(yùn)算就能求出“單一量”的歸一問題。又稱“單歸一!
兩次歸一問題,用兩步運(yùn)算就能求出“單一量”的歸一問題。又稱“雙歸一!
正歸一問題:用等分除法求出“單一量”之后,再用乘法計算結(jié)果的歸一問題。
反歸一問題:用等分除法求出“單一量”之后,再用除法計算結(jié)果的歸一問題。
解題關(guān)鍵:從已知的一組對應(yīng)量中用等分除法求出一份的數(shù)量(單一量),然后以它為標(biāo)準(zhǔn),根據(jù)題目的要求算出結(jié)果。
數(shù)量關(guān)系式:單一量×份數(shù)=總數(shù)量(正歸一)
總數(shù)量÷單一量=份數(shù)(反歸一)
例 一個織布工人,在七月份織布 4774 米 , 照這樣計算,織布 6930 米 ,需要多少天?
分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)
3、歸總問題:是已知單位數(shù)量和計量單位數(shù)量的個數(shù),以及不同的單位數(shù)量(或單位數(shù)量的個數(shù)),通過求總數(shù)量求得單位數(shù)量的個數(shù)(或單位數(shù)量)。
特點(diǎn):兩種相關(guān)聯(lián)的量,其中一種量變化,另一種量也跟著變化,不過變化的規(guī)律相反,和反比例算法彼此相通。
數(shù)量關(guān)系式:單位數(shù)量×單位個數(shù)÷另一個單位數(shù)量 = 另一個單位數(shù)量
單位數(shù)量×單位個數(shù)÷另一個單位數(shù)量 = 另一個單位數(shù)量。
例 修一條水渠,原計劃每天修 800 米 , 6 天修完。實(shí)際 4 天修完,每天修了多少米?
分析:因?yàn)橐蟪雒刻煨薜拈L度,就必須先求出水渠的長度。所以也把這類應(yīng)用題叫做“歸總問題”。不同之處是“歸一”先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。 80 0 × 6 ÷ 4=1200 (米)
4、和差問題:已知大小兩個數(shù)的和,以及他們的差,求這兩個數(shù)各是多少的應(yīng)用題叫做和差問題。
解題關(guān)鍵:是把大小兩個數(shù)的和轉(zhuǎn)化成兩個大數(shù)的和(或兩個小數(shù)的和),然后再求另一個數(shù)。
解題規(guī)律:(和+差)÷2 = 大數(shù) 大數(shù)-差=小數(shù)
。ê停睿2=小數(shù) 和-小數(shù)= 大數(shù)
例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時從乙班調(diào) 46 人到甲班工作,這時乙班比甲班人數(shù)少 12 人,求原來甲班和乙班各有多少人?
分析:從乙班調(diào) 46 人到甲班,對于總數(shù)沒有變化,現(xiàn)在把乙數(shù)轉(zhuǎn)化成 2 個乙班,即 9 4 - 12 ,由此得到現(xiàn)在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在調(diào)出 46 人之前應(yīng)該為 41+46=87 (人),甲班為 9 4 - 87=7 (人)
5、和倍問題:已知兩個數(shù)的和及它們之間的倍數(shù) 關(guān)系,求兩個數(shù)各是多少的應(yīng)用題,叫做和倍問題。
解題關(guān)鍵:找準(zhǔn)標(biāo)準(zhǔn)數(shù)(即1倍數(shù))一般說來,題中說是“誰”的幾倍,把誰就確定為標(biāo)準(zhǔn)數(shù)。求出倍數(shù)和之后,再求出標(biāo)準(zhǔn)的數(shù)量是多少。根據(jù)另一個數(shù)(也可能是幾個數(shù))與標(biāo)準(zhǔn)數(shù)的倍數(shù)關(guān)系,再去求另一個數(shù)(或幾個數(shù))的數(shù)量。
解題規(guī)律:和÷倍數(shù)和=標(biāo)準(zhǔn)數(shù) 標(biāo)準(zhǔn)數(shù)×倍數(shù)=另一個數(shù)
例:汽車運(yùn)輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運(yùn)輸場有大貨車和小汽車各有多少輛?
分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數(shù) 115 輛內(nèi),為了使總數(shù)與( 5+1 )倍對應(yīng),總車輛數(shù)應(yīng)( 115-7 )輛 。
列式為( 115-7 )÷( 5+1 ) =18 (輛), 18 × 5+7=97 (輛)
6、差倍問題:已知兩個數(shù)的差,及兩個數(shù)的倍數(shù)關(guān)系,求兩個數(shù)各是多少的應(yīng)用題。
解題規(guī)律:兩個數(shù)的差÷(倍數(shù)-1 )= 標(biāo)準(zhǔn)數(shù) 標(biāo)準(zhǔn)數(shù)×倍數(shù)=另一個數(shù)。
例 甲乙兩根繩子,甲繩長 63 米 ,乙繩長 29 米 ,兩根繩剪去同樣的長度,結(jié)果甲所剩的長度是乙繩 長的 3 倍,甲乙兩繩所剩長度各多少米? 各減去多少米?
分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的 3 倍,實(shí)比乙繩多( 3-1 )倍,以乙繩的長度為標(biāo)準(zhǔn)數(shù)。列式( 63-29 )÷( 3-1 ) =17 (米)…乙繩剩下的長度, 17 × 3=51 (米)…甲繩剩下的長度, 29-17=12 (米)…剪去的長度。
7、行程問題:關(guān)于走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、杜速度和、速度差等概念,了解他們之間的關(guān)系,再根據(jù)這類問題的規(guī)律解答。
解題關(guān)鍵及規(guī)律:
同時同地相背而行:路程=速度和×?xí)r間。
同時相向而行:相遇時間=速度和×?xí)r間
同時同向而行(速度慢的在前,快的在后):追及時間=路程速度差。
同時同地同向而行(速度慢的在后,快的在前):路程=速度差×?xí)r間。
例 甲在乙的后面 28 千米 ,兩人同時同向而行,甲每小時行 16 千米 ,乙每小時行 9 千米 ,甲幾小時追上乙?
分析:甲每小時比乙多行( 16-9 )千米,也就是甲每小時可以追近乙( 16-9 )千米,這是速度差。
已知甲在乙的后面 28 千米 (追擊路程), 28 千米 里包含著幾個( 16-9 )千米,也就是追擊所需要的時間。列式 2 8 ÷ ( 16-9 ) =4 (小時)
8、流水問題:一般是研究船在“流水”中航行的問題。它是行程問題中比較特殊的一種類型,它也是一種和差問題。它的特點(diǎn)主要是考慮水速在逆行和順行中的不同作用。
船速:船在靜水中航行的速度。
水速:水流動的速度。
順?biāo)俣龋捍樍骱叫械乃俣取?/p>
逆水速度:船逆流航行的速度。
順?biāo)?船速+水速
逆速=船速-水速
解題關(guān)鍵:因?yàn)轫樍魉俣仁谴倥c水速的和,逆流速度是船速與水速的差,所以流水問題當(dāng)作和差問題解答。 解題時要以水流為線索。
解題規(guī)律:船行速度=(順?biāo)俣? 逆流速度)÷2
流水速度=(順流速度逆流速度)÷2
路程=順流速度× 順流航行所需時間
路程=逆流速度×逆流航行所需時間
例 一只輪船從甲地開往乙地順?biāo),每小時行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比順?biāo)嘈?2 小時,已知水速每小時 4 千米。求甲乙兩地相距多少千米?
分析:此題必須先知道順?biāo)乃俣群晚標(biāo)枰臅r間,或者逆水速度和逆水的`時間。已知順?biāo)俣群退?速度,因此不難算出逆水的速度,但順?biāo)玫臅r間,逆水所用的時間不知道,只知道順?biāo)饶嫠儆?2 小時,抓住這一點(diǎn),就可以就能算出順?biāo)畯募椎氐揭业氐乃玫臅r間,這樣就能算出甲乙兩地的路程。列式為 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小時) 28 × 5=140 (千米)。
9、還原問題:已知某未知數(shù),經(jīng)過一定的四則運(yùn)算后所得的結(jié)果,求這個未知數(shù)的應(yīng)用題,我們叫做還原問題。
解題關(guān)鍵:要弄清每一步變化與未知數(shù)的關(guān)系。
解題規(guī)律:從最后結(jié)果 出發(fā),采用與原題中相反的運(yùn)算(逆運(yùn)算)方法,逐步推導(dǎo)出原數(shù)。
根據(jù)原題的運(yùn)算順序列出數(shù)量關(guān)系,然后采用逆運(yùn)算的方法計算推導(dǎo)出原數(shù)。
解答還原問題時注意觀察運(yùn)算的順序。若需要先算加減法,后算乘除法時別忘記寫括號。
例 某小學(xué)三年級四個班共有學(xué)生 168 人,如果四班調(diào) 3 人到三班,三班調(diào) 6 人到二班,二班調(diào) 6 人到一班,一班調(diào) 2 人到四班,則四個班的人數(shù)相等,四個班原有學(xué)生多少人?
分析:當(dāng)四個班人數(shù)相等時,應(yīng)為 168 ÷ 4 ,以四班為例,它調(diào)給三班 3 人,又從一班調(diào)入 2 人,所以四班原有的人數(shù)減去 3 再加上 2 等于平均數(shù)。四班原有人數(shù)列式為 168 ÷ 4-2+3=43 (人)
一班原有人數(shù)列式為 168 ÷ 4-6+2=38 (人);二班原有人數(shù)列式為 168 ÷ 4-6+6=42 (人) 三班原有人數(shù)列式為 168 ÷ 4-3+6=45 (人)。
10、植樹問題:這類應(yīng)用題是以“植樹”為內(nèi)容。凡是研究總路程、株距、段數(shù)、棵樹四種數(shù)量關(guān)系的應(yīng)用題,叫做植樹問題。
解題關(guān)鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然后按基本公式進(jìn)行計算。
解題規(guī)律:沿線段植樹
棵樹=段數(shù)+1 棵樹=總路程÷株距+1
株距=總路程÷(棵樹-1) 總路程=株距×(棵樹-1)
沿周長植樹
棵樹=總路程÷株距
株距=總路程÷棵樹
總路程=株距×棵樹
例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 。后來全部改裝,只埋了201 根。求改裝后每相鄰兩根的間距。
分析:本題是沿線段埋電線桿,要把電線桿的根數(shù)減掉一。列式為 50 ×( 301-1 )÷( 201-1 ) =75 (米)
11、盈虧問題:是在等分除法的基礎(chǔ)上發(fā)展起來的。 他的特點(diǎn)是把一定數(shù)量的物品,平均分配給一定數(shù)量的人,在兩次分配中,一次有余,一次不足(或兩次都有余),或兩次都不足),已知所余和不足的數(shù)量,求物品適量和參加分配人數(shù)的問題,叫做盈虧問題。
解題關(guān)鍵:盈虧問題的解法要點(diǎn)是先求兩次分配中分配者沒份所得物品數(shù)量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個差去除后一個差,就得到分配者的數(shù),進(jìn)而再求得物品數(shù)。
解題規(guī)律:總差額÷每人差額=人數(shù)
總差額的求法可以分為以下四種情況:
第一次多余,第二次不足,總差額=多余 + 不足
第一次正好,第二次多余或不足 ,總差額 = 多余或不足
第一次多余,第二次也多余,總差額 = 大多余 - 小多余
第一次不足,第二次也不足,總差額 = 大不足 - 小不足
例 參加美術(shù)小組的同學(xué),每個人分的相同的支數(shù)的色筆,如果小組 10 人,則多 25 支,如果小組有 12 人,色筆多余 5 支。求每人 分得幾支?共有多少支色鉛筆?
分析:每個同學(xué)分到的色筆相等。這個活動小組有 12 人,比 10 人多 2 人,而色筆多出了( 25-5 ) =20 支 , 2 個人多出 20 支,一個人分得 10 支。列式為( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。
12、年齡問題:將差為一定值的兩個數(shù)作為題中的一個條件,這種應(yīng)用題被稱為“年齡問題”。
解題關(guān)鍵:年齡問題與和差、和倍、 差倍問題類似,主要特點(diǎn)是隨著時間的變化,年歲不斷增長,但大小兩個不同年齡的差是不會改變的,因此,年齡問題是一種“差不變”的問題,解題時,要善于利用差不變的特點(diǎn)。
例 父親 48 歲,兒子 21 歲。問幾年前父親的年齡是兒子的 4 倍?
分析:父子的年齡差為 48-21=27 (歲)。由于幾年前父親年齡是兒子的 4 倍,可知父子年齡的倍數(shù)差是( 4-1 )倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的 4 倍。列式為: 21( 48-21 )÷( 4-1 ) =12 (年)
13、雞兔問題:已知“雞兔”的總頭數(shù)和總腿數(shù)。求“雞”和“兔”各多少只的一類應(yīng)用題。通常稱為“雞兔問題”又稱雞兔同籠問題
解題關(guān)鍵:解答雞兔問題一般采用假設(shè)法,假設(shè)全是一種動物(如全是“雞”或全是“兔”,然后根據(jù)出現(xiàn)的腿數(shù)差,可推算出某一種的頭數(shù)。
解題規(guī)律:(總腿數(shù)-雞腿數(shù)×總頭數(shù))÷一只雞兔腿數(shù)的差=兔子只數(shù)
兔子只數(shù)=(總腿數(shù)-2×總頭數(shù))÷2
如果假設(shè)全是兔子,可以有下面的式子:
雞的只數(shù)=(4×總頭數(shù)-總腿數(shù))÷2
兔的頭數(shù)=總頭數(shù)-雞的只數(shù)
例 雞兔同籠共 50 個頭, 170 條腿。問雞兔各有多少只?
兔子只數(shù) ( 170-2 × 50 )÷ 2 =35 (只)
雞的只數(shù) 50-35=15 (只)
四、分?jǐn)?shù)和百分?jǐn)?shù)的應(yīng)用
1、分?jǐn)?shù)加減法應(yīng)用題:
分?jǐn)?shù)加減法的應(yīng)用題與整數(shù)加減法的應(yīng)用題的結(jié)構(gòu)、數(shù)量關(guān)系和解題方法基本相同,所不同的只是在已知數(shù)或未知數(shù)中含有分?jǐn)?shù)。
2、分?jǐn)?shù)乘法應(yīng)用題:
是指已知一個數(shù),求它的幾分之幾是多少的應(yīng)用題。
特征:已知單位“1”的量和分率,求與分率所對應(yīng)的實(shí)際數(shù)量。
解題關(guān)鍵:準(zhǔn)確判斷單位“1”的量。找準(zhǔn)要求問題所對應(yīng)的分率,然后根據(jù)一個數(shù)乘分?jǐn)?shù)的意義正確列式。
3、分?jǐn)?shù)除法應(yīng)用題:
求一個數(shù)是另一個數(shù)的幾分之幾(或百分之幾)是多少。
特征:已知一個數(shù)和另一個數(shù),求一個數(shù)是另一個數(shù)的幾分之幾或百分之幾!耙粋數(shù)”是比較量,“另一個數(shù)”是標(biāo)準(zhǔn)量。求分率或百分率,也就是求他們的倍數(shù)關(guān)系。
解題關(guān)鍵:從問題入手,搞清把誰看作標(biāo)準(zhǔn)的數(shù)也就是把誰看作了“單位一”,誰和單位一的量作比較,誰就作被除數(shù)。
甲是乙的幾分之幾(百分之幾):甲是比較量,乙是標(biāo)準(zhǔn)量,用甲除以乙。
甲比乙多(或少)幾分之幾(百分之幾):甲減乙比乙多(或少幾分之幾)或(百分之幾)。關(guān)系式(甲數(shù)減乙數(shù))/乙數(shù)或(甲數(shù)減乙數(shù))/甲數(shù) 。
已知一個數(shù)的幾分之幾(或百分之幾 ) ,求這個數(shù)。
特征:已知一個實(shí)際數(shù)量和它相對應(yīng)的分率,求單位“1”的量。
解題關(guān)鍵:準(zhǔn)確判斷單位“1”的量把單位“1”的量看成x根據(jù)分?jǐn)?shù)乘法的意義列方程,或者根據(jù)分?jǐn)?shù)除法的意義列算式,但必須找準(zhǔn)和分率相對應(yīng)的已知實(shí)際數(shù)量。
4、出勤率
發(fā)芽率=發(fā)芽種子數(shù)/試驗(yàn)種子數(shù)×100%
小麥的出粉率= 面粉的重量/小麥的重量×100%
產(chǎn)品的合格率=合格的產(chǎn)品數(shù)/產(chǎn)品總數(shù)×100%
職工的出勤率=實(shí)際出勤人數(shù)/應(yīng)出勤人數(shù)×100%
5、工程問題:
是分?jǐn)?shù)應(yīng)用題的特例,它與整數(shù)的工作問題有著密切的聯(lián)系。它是探討工作總量、工作效率和工作時間三個數(shù)量之間相互關(guān)系的一種應(yīng)用題。
解題關(guān)鍵:把工作總量看作單位“1”,工作效率就是工作時間的倒數(shù),然后根據(jù)題目的具體情況,靈活運(yùn)用公式。
數(shù)量關(guān)系式:
工作總量=工作效率×工作時間
工作效率=工作總量÷工作時間
工作時間=工作總量÷工作效率
工作總量÷工作效率和=合作時間
6、納稅
納稅就是把根據(jù)國家各種稅法的有關(guān)規(guī)定,按照一定的比率把集體或個人收入的一部分繳納給國家。
繳納的稅款叫應(yīng)納稅款。
應(yīng)納稅額與各種收入的(銷售額、營業(yè)額、應(yīng)納稅所得額 ……)的比率叫做稅率。
7、利息
存入銀行的錢叫做本金。
取款時銀行多支付的錢叫做利息。
利息與本金的比值叫做利率。
利息=本金×利率×?xí)r間
小學(xué)數(shù)學(xué)應(yīng)用題類型 篇2
一、一般應(yīng)用題
一般應(yīng)用題沒有固定的結(jié)構(gòu),也沒有解題規(guī)律可循,完全要依賴分析題目的數(shù)量關(guān)系找出解題的線索。
要點(diǎn):從條件入手?從問題入?
從條件入手分析時,要隨時注意題目的問題
從問題入手分析時,要隨時注意題目的已知條件。
例題如下:
某五金廠一車間要生產(chǎn)1100個零件,已經(jīng)生產(chǎn)了5天,平均每天生產(chǎn)130個。剩下的如果平均每天生產(chǎn)150個,還需幾天完成?
思路分析:
已知“已經(jīng)生產(chǎn)了5天,平均每天生產(chǎn)130個”,就可以求出已經(jīng)生產(chǎn)的個數(shù)。
已知“要生產(chǎn)1100個機(jī)器零件”和已經(jīng)生產(chǎn)的個數(shù),已知“剩下的平均每天生產(chǎn)150個”,就可以求出還需幾天完成。
二、典型應(yīng)用題
用兩步或兩步以上運(yùn)算解答的應(yīng)用題中,有的題目由于具有特殊的結(jié)構(gòu),因而可以用特定的步驟和方法來解答,這樣的應(yīng)用題通常稱為典型應(yīng)用題。
。ㄒ唬┣笃骄鶖(shù)應(yīng)用題
解答求平均數(shù)問題的規(guī)律是:
總數(shù)量÷對應(yīng)總份數(shù)=平均數(shù)
注:在這類應(yīng)用題中,我們要抓住的是對應(yīng),可根據(jù)總數(shù)量來劃分成不同的子數(shù)量,再一一地根據(jù)子數(shù)量找出各自的份數(shù),最終得出對應(yīng)關(guān)系。
例題一如下:
一臺碾米機(jī),上午4小時碾米1360千克,下午3小時碾米1096千克,這天平均每小時碾米約多少千克?
思路分析:
要求這天平均每小時碾米約多少千克,需解決以下三個問題:
1、這一天總共碾了多少米?(一天包括上午、下午)。
2、這一天總共工作了多少小時?(上午的4小時,下午的3小時)。
3、這一天的總數(shù)量是多少?這一天的總份數(shù)是多少?(從而找出了對應(yīng)關(guān)系,問題也就得到了解決。)
。ǘw一問題
歸一問題的題目結(jié)構(gòu)是:
題目的前部分是已知條件,是一組相關(guān)聯(lián)的量;
題目的后半部分是問題,也是一組相關(guān)聯(lián)的量,其中有一個量是未知的。
解題規(guī)律是,先求出單一的量,然后再根據(jù)問題,或求單一量的幾倍是多少,或求有幾個單一量。
例題如下:
6臺拖拉機(jī)4小時耕地300畝,照這樣計數(shù),8臺拖拉機(jī)7小時可耕地多少畝?
思路分析:
先求出單一量,即1臺拖拉機(jī)1小時耕地的畝數(shù),再求8臺拖拉機(jī)7小時耕地的畝數(shù)。
。ㄈ┫嘤鰡栴}
指兩運(yùn)動物體從兩地以不同的速度作相向運(yùn)動。
相遇問題的基本關(guān)系是:
1、相遇時間=相隔距離(兩個物體運(yùn)動時)÷速度和。
例題如下:兩地相距500米,小紅和小明同時從兩地相向而行,小紅每分鐘行60米,小明每分鐘行65米,幾分鐘相遇?
2、相隔距離(兩物體運(yùn)動時)=速度之和×相遇時間
例題如下:一列客車和一列貨車分別從甲乙兩地同時相對開出,10小時后在途中相遇。已知貨車平均每小時行45千米,客車每小時的速度比貨車快20﹪,求甲乙相距多少千米?
3、甲速=相隔距離(兩個物體運(yùn)動時)÷相遇時間-乙速
例題如下:一列貨車和一列客車同時從相距648千米的兩地相對開出,4.5小時相遇?蛙嚸啃r行80千米,貨車每小時行多少千米?
相遇問題可以有不少變化。
如兩個物體從兩地相向而行,但不同時出發(fā);
或者其中一個物體中途停頓了一下;
或兩個運(yùn)動的物體相遇后又各自繼續(xù)走了一段距離等,都要結(jié)合具體情況進(jìn)行分析。
另:相遇問題可以引申為工程問題:即工效和×合做時間=工作總量
三、分?jǐn)?shù)和百分?jǐn)?shù)應(yīng)用題
分?jǐn)?shù)和百分?jǐn)?shù)的基本應(yīng)用題有三種,下面分別談一談每種應(yīng)用題的特征和解題的規(guī)律。
(一)求一個數(shù)是另一個數(shù)的百分之幾
這類問題的結(jié)構(gòu)特征是,已知兩個數(shù)量,所求問題是這兩個量間的百分率。
求一個數(shù)是另一個數(shù)的百分之幾與求一個數(shù)是另一個數(shù)的幾倍或幾分之幾的實(shí)質(zhì)是一樣的,只不過計算結(jié)果用百分?jǐn)?shù)表示罷了,所以求一個數(shù)是另一數(shù)的百分之幾時,要用除法計算。
解題的一般規(guī)律是:設(shè)a、b是兩個數(shù),當(dāng)求a是b的百分之幾時,列式是a÷b。解答這類應(yīng)用題時,關(guān)鍵是理解問題的含意。
例題如下:
養(yǎng)豬專業(yè)戶李阿姨去年養(yǎng)豬350頭,今年比去年多養(yǎng)豬60頭,今年比去年多養(yǎng)豬百分之幾?
思路分析:
問題的含義是:今年比去年多養(yǎng)豬的頭數(shù)是去年養(yǎng)豬頭數(shù)的百分之幾。所以應(yīng)用今年比去年多養(yǎng)豬的頭數(shù)去÷去年養(yǎng)豬的頭數(shù),然后把所得的結(jié)果轉(zhuǎn)化成百分?jǐn)?shù)。
(二)求一個數(shù)的幾分之幾或百分之幾
求一個數(shù)的幾分之幾或百分之幾是多少,都用乘法計算。
解答這類問題時,要從反映兩個數(shù)的倍數(shù)關(guān)系的那個已知條件入手分析,先確定單位“1”,然后確定求單位“1”的幾分之幾或百分之幾。
。ㄈ┮阎粋數(shù)的'幾分之幾或百分之幾是多少,求這個數(shù)
這類應(yīng)用題可以用方程來解,也可以用算術(shù)法來解。
用算術(shù)方法解時,要用除法計算。
解答這類應(yīng)用題時,也要反映兩個數(shù)的倍數(shù)關(guān)系的已知條件入手分析:
先確定單位“1”,再確定單位“1”的幾分之幾或百分之幾是多少。
一些稍難的應(yīng)用題,可以畫圖幫助分析數(shù)量關(guān)系。
。ㄋ模┕こ虇栴}
工程問題是研究工作效率、工作時間和工作總量的問題。
這類題目的特點(diǎn)是:
工作總量沒有給出實(shí)際數(shù)量,把它看做“1”,工作效率用來表示,所求問題大多是合作時間。
例題如下:
一件工程,甲工程隊修建需要8天,乙工程隊修建需要12天,兩隊合修4天后,剩下的任務(wù),有乙工程隊單獨(dú)修,還需幾天?
思路分析:
把一件工程的工作量看作“1”,則甲的工作效率是1/8,乙的工作效率是1/12。
已知兩隊合修了4天,就可求出合修的工作量,進(jìn)而也就能求出剩下的工作量。
用剩下的工作量除以乙的工作效率,就是還需要幾天完成。
四、比和比例應(yīng)用題
比和比例應(yīng)用題是小學(xué)數(shù)學(xué)應(yīng)用題的重要組成部分。在小學(xué)中,比的應(yīng)用題包括:比例尺應(yīng)用題和按比例分配應(yīng)用題,正、反比例應(yīng)用題。
(一)比例尺應(yīng)用題
這種應(yīng)用題是研究圖上距離、實(shí)際距離和比例尺三者之間的關(guān)系的。
解答這類應(yīng)用題時,最主要的是要清楚比例尺的意義,即:
圖上距離÷實(shí)際距離=比例尺
根據(jù)這個關(guān)系式,已知三者之間的任意兩個量,就可以求出第三個未知的量。
例題如下:
在比例尺是1:3000000的地圖上,量得A城到B城的距離是8厘米,A城到B城的實(shí)際距離是多少千米?
思路分析:
把比例尺寫成分?jǐn)?shù)的形式,把實(shí)際距離設(shè)為x,代入比例尺的關(guān)系式就可解答了。所設(shè)未知數(shù)的計量單位名稱要與已知的計量單位名稱相同。
(二)按比例分配應(yīng)用題
這類應(yīng)用題的特點(diǎn)是:把一個數(shù)量按照一定的比分成兩部分或幾部分,求各部分的數(shù)量是多少。
這是學(xué)生在小學(xué)階段唯一接觸到的不平均分問題。
這類應(yīng)用題的解題規(guī)律是:
先求出各部分的份數(shù)和,在確定各部分量占總數(shù)量的幾分之幾,最后根據(jù)求一個數(shù)的幾分之幾是多少,用乘法計算,求出各部分的數(shù)量。
按比例分配也可以用歸一法來解。
例題如下:
一種農(nóng)藥溶液是用藥粉加水配制而成的,藥粉和水的重量比是1:100。2500千克水需要藥粉多少千克?5.5千克藥粉需加水多少千克?
思路分析:
已知藥和水的份數(shù),就可以知道藥和水的總份數(shù)之和,也就可以知道藥和水各自占總份數(shù)的幾分之幾,知道了分率,相應(yīng)地也就可以求出各自相對量。
。ㄈ┱⒎幢壤龖(yīng)用題
解答這類應(yīng)用題,關(guān)鍵是判斷題目中的兩種相關(guān)聯(lián)的量是成正比里的量,還是成反比例的量。
如果用字母x、y表示兩種相關(guān)聯(lián)的量,用K表示比值(一定),兩種相向關(guān)聯(lián)的量成正比例時,用下面的式子來表示:
kx=y(tǒng)(一定)。
如果兩種相關(guān)聯(lián)的量成反比例時,可用下面的式子來表示:
×y=K(一定)。
例題如下:
六一玩具廠要生產(chǎn)2080套兒童玩具。前6天生產(chǎn)了960套,照這樣計算,完成全部任務(wù)共需要多少天?
思路分析:
因?yàn)楣ぷ骺偭俊鹿ぷ鲿r間=工作效率,已知工作效率一定,所以工作總量與工作時間成正比例。
小學(xué)數(shù)學(xué)應(yīng)用題類型 篇3
一、分?jǐn)?shù)的應(yīng)用題
1、一缸水,用去1/2和5桶,還剩30%,這缸水有多少桶?
2、一根鋼管長10米,第一次截去它的7/10,第二次又截去余下的1/3,還剩多少米?
3、修筑一條公路,完成了全長的2/3后,離中點(diǎn)16.5千米,這條公路全長多少千米?
4、師徒兩人合做一批零件,徒弟做了總數(shù)的2/7,比師傅少做21個,這批零件有多少個?
5、倉庫里有一批化肥,第一次取出總數(shù)的2/5,第二次取出總數(shù)的1/3少12袋,這時倉庫里還剩24袋,兩次共取出多少袋?
6、甲乙兩地相距1152千米,一列客車和一列貨車同時從兩地對開,貨車每小時行72千米,比客車快 2/7,兩車經(jīng)過多少小時相遇?
7、一件上衣比一條褲子貴160元,其中褲子的價格是上衣的3/5,一條褲子多少元?
8、飼養(yǎng)組有黑兔60只,白兔比黑兔多1/5,白兔有多少只?
9、學(xué)校要挖一條長80米的下水道,第一天挖了全長的1/4,第二天挖了全長的1/2,兩天共挖了多少米?還剩下多少米?
二、比的應(yīng)用題
1、 一個長方形的周長是24厘米 ,長與寬的比是 2:1 ,這個長方形的面積是多少平方厘米?
2、 一個長方體棱長總和為 96 厘米 ,長、寬、高的比是 3∶2 ∶1 ,這個長方體的體積是多少?
3、 一個長方體棱長總和為 96 厘米 ,高為4厘米 ,長與寬的比是 3 ∶2 ,這個長方體的體積是多少?
4、 某校參加電腦興趣小組的有42人,其中男、女生人數(shù)的比是 4 ∶3,男生有多少人?
5、 有兩筐水果,甲筐水果重32千克,從乙筐取出20%后,甲乙兩筐水果的重量比是4:3,原來兩筐水果共有多少千克?
6、 做一個600克豆沙包,需要面粉 紅豆和糖的比是3:2:1,面粉 紅豆和糖各需多少克?
7、 小明看一本故事書,第一天看了全書的1/9,第二天看了24頁,兩天看了的頁數(shù)與剩下頁數(shù)的比是1:4,這本書共有多少頁?
8、 一個三角形的三個內(nèi)角的比是2:3:4,這三個內(nèi)角的度數(shù)分別是多少?
三、百分?jǐn)?shù)的應(yīng)用題
1、某化肥廠今年產(chǎn)值比去年增加了 20%,比去年增加了500萬元,今年道值是多少萬元?
2、果品公司儲存一批蘋果,售出這批蘋果的30%后,又運(yùn)來160箱,這時比原來儲存的蘋果多1/10 ,這時有蘋果多少箱?
3、一件商品,原價比現(xiàn)價少百分之20,現(xiàn)價是1028元,原價是多少元?
4、教育儲蓄所得的利息不用納稅。爸爸為笑笑存了三年期的教育儲蓄基金,年利率為
5.40%,到期后共領(lǐng)到了本金和利息22646元。爸爸為笑笑存的教育儲蓄基金的本金是多少?
5、服裝店同時買出了兩件衣服,每件衣服各得120元,但其中一件賺20%,另一件陪了20%,問服裝店賣出的`兩件衣服是賺錢了還是虧本了?
6、爸爸今年43歲,女兒今年11歲,幾年前女兒年齡是爸爸的20%?
6、比5分之2噸少20%是( )噸,( )噸的30%是60噸。
7、一本200頁的書,讀了20%,還剩下( )頁沒讀。甲數(shù)的40%與乙數(shù)的50%相等,甲數(shù)是120,乙數(shù)是( )。
8、某工廠四月份下半月用水5400噸,比上半月節(jié)約20%,上半月用水多少噸?
9、 張平有500元錢,打算存入銀行兩年.可以有兩種儲蓄辦法,一種是存兩年期的,年利率是2.43%;一種是先存一年期的,年利率是2.25%,第一年到期時再把本金和稅后利息取出來合在一起,再存入一年.選擇哪種辦法得到的稅后利息多一些?
10、 小麗的媽媽在銀行里存入人民幣5000元,存期一年,年利率2.25%,取款時由銀行代扣代收20%的利息稅,到期時,所交的利息稅為多少元?
11、 一種小麥出粉率為85%,要磨13.6噸面粉,需要這樣的小麥_____噸。
四、圓的應(yīng)用題
1、畫一個周長 12.56 厘米的圓,并用字母標(biāo)出圓心和一條半徑,再求出這個圓的面積。
2、學(xué)校有一塊圓形草坪,它的直徑是30米,這塊草坪的面積是多少平方米?如果沿著草坪的周圍每隔1.57米擺一盆菊花,要準(zhǔn)備多少盆菊花?
3、一個圓和一個扇形的半徑相等,圓面積是30平方厘米,扇形的圓心角是36度。求扇形的面積。
4、前輪在720米的距離里比后輪多轉(zhuǎn)40周,如果后輪的周長是2米,求前輪的周長。
5、一個圓形花壇的直徑是10厘米,在它的四周鋪一條2米寬的小路,這條小路面積是多少平方米?
6、學(xué)校有一塊直徑是40M的圓形空地,計劃在正中央修一個圓形花壇,剩下部分鋪一條寬6米的水泥路面,水泥路面的面積是多少平方米?
7、有一個圓環(huán),內(nèi)圓的周長是31.4厘米,外圓的周長是62.8厘米,圓環(huán)的寬是多少厘米?
8、一只掛鐘的分針長20厘米,經(jīng)過45分鐘后,這根分針的尖端所走的路程是多少厘米?
9、一只大鐘的時針長0.3米,這根時針的尖端1天走過多少米?掃過的面積是多少平方米?
【小學(xué)數(shù)學(xué)應(yīng)用題類型】相關(guān)文章:
關(guān)于小學(xué)數(shù)學(xué)分配律應(yīng)用題07-17
數(shù)學(xué)考試應(yīng)用題4篇11-02
數(shù)學(xué)考試應(yīng)用題(4篇)11-02
職業(yè)人才的類型06-02
調(diào)查報告的類型06-26
暑假常見的求職陷阱類型10-13
中考輔導(dǎo):病句類型及例句11-16