- 相關推薦
函數(shù)教學案例及反思
初步構建比較系統(tǒng)的函數(shù)知識體系,能應用本章的基礎知識熟練地解決數(shù)學問題。 難點:對直線的平移法則的理解,體會數(shù)形結合思想。
一、教學目標:
1、知道一次函數(shù)與正比例函數(shù)的定義.
2、理解掌握一次函數(shù)的圖象的特征和相關的性質(zhì);體會數(shù)形結合思想。
3、弄清一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系.
4、掌握直線的平移法則簡單應用.
5、能應用本章的基礎知識熟練地解決數(shù)學問題。
二、教學重、難點:
重點:初步構建比較系統(tǒng)的函數(shù)知識體系,能應用本章的基礎知識熟練地解決數(shù)學問題。
難點:對直線的平移法則的理解,體會數(shù)形結合思想。
三、教學設計簡介:
因為這是初三總復習節(jié)段的復習課,在這之前已經(jīng)復習了變量、函數(shù)的定義、表示法及圖象,而本節(jié)的教學任務是一次函數(shù)的基礎知識及其簡單的應用,沒有涉及實際應用。為了節(jié)約學生的時間,打造高效課堂,我開門見山,直接向?qū)W生展示教學目標,然后讓學生根據(jù)本節(jié)課的復習目標進行聯(lián)想回顧,變被動學習為主動學習。例如,在“圖象及其性質(zhì)”環(huán)節(jié)中,老師讓學生自己說出一次函數(shù)圖象的形狀、位置及增減性,不完整的可讓其他學生補充糾正。這樣,使無味的復習課變得活躍一些,增強學習氣氛。隨后教師就用大屏幕展示出標準答案,然后教師組織學生以比賽的形式做一些針對性的練習。為了鞏固知識點,學生解決每一個問題時都要求其說出所運用的知識點。
四、教學過程:
1、一次函數(shù)與正比例函數(shù)的定義 :
一次函數(shù):一般地,若y=kx+b(其中k,b為常數(shù)且k≠0),那么y是一次函數(shù)
正比例函數(shù):對于 y=kx+b,當b=0, k≠0時,有y=kx,此時稱y是x的正比例函數(shù),k為正比例系數(shù)。
2. 一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系:
。1)從解析式看:y=kx+b(k≠0,b是常數(shù))是一次函數(shù);而y=kx(k≠0,b=0)是正比例函數(shù),顯然正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)是正比例函數(shù)的推廣。
。2)從圖象看:正比例函數(shù)y=kx(k≠0)的圖象是過原點(0,0)的一條直線;而一次函數(shù)y=kx+b(k≠0)的圖象是過點(0,b)且與y=kx平行的一條直線。
基礎訓練一:
(1)、指出下列函數(shù)中的正比例函數(shù)和一次函數(shù):①y = x +1;②y = - x/5;
③y = 3/x ;④y = 4x ;⑤y =x(3x+1)-3x ;⑥y=3(x-2);⑦y=x/5-1/2。
(2)、下列給出的兩個變量中,成正比例函數(shù)關系的是:
A、少年兒童的身高和年齡;B、長方形的面積一定,它的長與寬;
C、圓的面積和它的半徑;D、勻速運動中速度固定時,路程與時間的關系。
(3)、對于函數(shù)y =(m+1)x + 2- n,當m、n滿足什么條件時為正比例函數(shù)?當m、n滿足什么條件時為一次函數(shù)?
3、正比例函數(shù)、一次函數(shù)的圖象和性質(zhì):
k,b的符號與直線y=kx+b(k≠0) 的位置關系:
k的符號決定了直線y=kx+b(k≠0) ;b的符號決定了直線y=kx+b與y軸的交點 。當k>0時,直線 ; 當k<0時,直線 。
當b>0時,直線交于y軸的 ;當b<0時,直線交于y軸的 。
為此直線y=kx+b(k≠0) 的位置有4種情況,分別是:
當k>0, b>0時,直線經(jīng)過 ;當k>0, b<0時,直線經(jīng)過 ;
當k<0,b>0時,直線經(jīng)過 ;當k<0,b<0時,直線經(jīng)過 。
基礎訓練二:
1. 寫出一個圖象經(jīng)過點(1,- 3)的函數(shù)解析式為 。
2.直線y = - 2X - 2 不經(jīng)過第 象限,y隨x的增大而 。
3.如果P(2,k)在直線y=2x+2上,那么點P到x軸的距離是 。
4.已知正比例函數(shù) y =(3k-1)x,,若y隨x的增大而增大,則k
是 。
5、過點(0,2)且與直線y=3x平行的直線是 。
6、若正比例函數(shù)y =(1-2m)x 的圖像過點A(x1,y1)和點B(x2,y2)當x1<x2時,y1>y2,則m的取值范圍是 。
7、若函數(shù)y = ax+b的圖像過一、二、三象限,則ab 。0
8、若y-2與x-2成正比例,當x=-2時,y=4,則x= 時,y = -4。
9、直線y=- 5x+b與直線y=x-3都交y軸上同一點,則b的值為 。
10、將直線y = -2x-2向上平移2個單位得到直線 ;
將它向左平移2個單位得到直線 。
綜合訓練:已知圓O的半徑為1,過點A(2,0)的直線切圓O于點B,交y軸于點C。(1)求線段AB的長。(2)求直線AC的解析式。
五、教學反思:
從本節(jié)課的設計上看,我自認為知識全面,講解透徹,條理清晰,系統(tǒng)性強,講練結合,訓練到位,一節(jié)課下來后學生在基礎知識方面不會有什么漏洞。因為復習課的課堂容量比較大,需要展示給學生的知識點比較多,訓練題也比較多,所以我選擇在多媒體上課。應該說在設計之初,我是在兩種方案中選出的一種為學生節(jié)省時間的復習方法,課前的工作全由教師完成,教師認真?zhèn)湔n,查閱資料,搜集有針對性的訓練題,學生只要課堂上能按照教師的思路去做就很高效了。可沒想到,在課的進行中,我就聽到有的教師在切切私語,都是初三學生了,怎么好象沒有幾個學習的。我也感覺到這節(jié)課確實有一大部分學生注意力渙散,沒有全身心地投入到學習中去。以致于面對簡單的問題都卡,思維不連續(xù)。糾其原因,是我沒有把學生學習的積極性充分調(diào)動起來,學生沒有發(fā)揮出學習的主動性。課堂訓練以競賽的形式進行,似乎有一定的刺激性,但缺少后續(xù)的刺激活動,學生沒有保持住持久的緊張狀態(tài)。
課后我找到了科代表,請他們協(xié)助我一同反思本節(jié)課的優(yōu)缺點,并把在以往的章末復習時曾采取過的另一種復習方案闡述給他們聽,就是課前先把所有的復習任務都交給學生完成,教師指導學生瀏覽教材、查閱資料歸納本章的基本概念、基本性質(zhì)、基本方法,并收集與每個知識點相關的有針對性的問題,也可以自己編題,同時要把每一個問題的答案做出來,盡量要一題多解。再由小組長組織小組成員匯編,在匯編過程中要去粗取精。課堂就是以小組為單位學生展示自己的舞臺,在這個舞臺上學生是主角,在這個舞臺上學生可以成果共享,在這個舞臺上學生收獲著自己的收獲。臺上他們是主角,臺下他們也是主角。
但是在初三總復習時,我理解學生的忙,所以能包辦的我就一律代做,以為這就是幫學生減輕負擔,學生自己去做的事是少了,可是需要學生被動記憶的知識多;教師把一節(jié)設計的井井有條,想要學生在這一節(jié)課里收獲更多,但被動的學生并沒有全身心的投入到學生中去,降低了課堂效率,又把好多任務壓到課下,最后教師減輕學生的課后負擔的想法還是落空了。
總結記錄
一節(jié)課結束或一天的教學任務完成后,我們應該靜下心來細細想想:這節(jié)課總體設計是否恰當,教學環(huán)節(jié)是否合理,講授內(nèi)如一位教師在讓學生進行分數(shù)應用題的綜合訓練時出了這樣一道題:一套課桌椅的價格是48元,其容是否清晰,教學手段的運用是否充分,重點、難點是否突出;今天我有哪些行為是正確的,哪些做得還不夠好,哪些地方需要調(diào)整、改進;學生的積極性是否調(diào)動起來了,學生學得是否愉快,我教得是否愉快,還有什么困惑等。把這些想清楚,作一總結,然后記錄下來,這樣就為今后的教學提供了可資借鑒的經(jīng)驗。經(jīng)過長期積累,我們必將獲得一筆寶貴的教學財富。
【函數(shù)教學案例及反思】相關文章:
初中函數(shù)教學反思07-06
大班教學反思案例07-04
物理教學反思案例07-04
幼兒教學反思案例07-03
體育教學反思案例07-03
案例:反思教育教學實踐10-12
幼兒教學反思案例分析07-04
教學案例設計與反思07-04
《影子》教學案例與反思07-04
教育教學案例反思07-03