国语精品91自产拍在线观看二区_色偷偷五月天_天天射夜夜爽_99久久免费国产特黄_1717国产精品久久

《一元一次不等式》七年級數(shù)學(xué)下冊第1課時教學(xué)設(shè)計

時間:2024-08-12 10:36:23 雪桃 語文 我要投稿
  • 相關(guān)推薦

《一元一次不等式》七年級數(shù)學(xué)下冊第1課時教學(xué)設(shè)計(精選10篇)

  作為一位無私奉獻的人民教師,通常需要準(zhǔn)備好一份教學(xué)設(shè)計,教學(xué)設(shè)計是連接基礎(chǔ)理論與實踐的橋梁,對于教學(xué)理論與實踐的緊密結(jié)合具有溝通作用。我們應(yīng)該怎么寫教學(xué)設(shè)計呢?下面是小編為大家整理的《一元一次不等式》七年級數(shù)學(xué)下冊第1課時教學(xué)設(shè)計,僅供參考,希望能夠幫助到大家。

《一元一次不等式》七年級數(shù)學(xué)下冊第1課時教學(xué)設(shè)計(精選10篇)

  《一元一次不等式》七年級數(shù)學(xué)下冊第1課時教學(xué)設(shè)計 1

  一、內(nèi)容和內(nèi)容解析

 。ㄒ唬﹥(nèi)容

  一元一次不等式的概念及解法

  (二)內(nèi)容解析

  在初中階段,不等式位于一次方程(組)之后,它是進一步探究現(xiàn)實世界數(shù)量關(guān)系的重要內(nèi)容,不等式的研究從最簡單的一元一次不等式開始,一元一次不等式及其相關(guān)概念是本章的基礎(chǔ)知識,解任何一個代數(shù)不等式(組)最終都要化歸為解一元一次不等式,因此解一元一次不等式是一項基本技能。另外,不等式解集在數(shù)軸上表示從形的角度描述了不等式的解集,并為解不等式組做了準(zhǔn)備,本節(jié)內(nèi)容是進一步學(xué)習(xí)其它不等式(組)的基礎(chǔ)。

  解一元一次不等式與解一元一次方程在本質(zhì)上是相同的,即依據(jù)不等式的性質(zhì),逐步將不等式化為x>a或x

  二、目標(biāo)和目標(biāo)的解析

  (一)目標(biāo)

 。1)了解一元一次不等式的概念,掌握一元一次不等式的解法;

 。2)在依據(jù)不等式的性質(zhì)探究一元一次不等式的解法的過程中,加深對化歸思想的體會。

 。ǘ┠繕(biāo)解析

  達到目標(biāo)(1)的標(biāo)志是:學(xué)生能說出一元一次不等式的特征,會解一元一次不等式,并能在數(shù)軸上表示出解集。

  達到目標(biāo)(2)的標(biāo)志是:學(xué)生能通過類比解一元一次方程的過程,獲得解一元一次不等式的思路,即依據(jù)不等式的性質(zhì),將一元一次不等式逐步化簡為x>a或x

  三、教學(xué)問題診斷分析

  通過前面的學(xué)習(xí),學(xué)生已掌握一元一次方程概念及解法,對解一元一次方程的化歸思想有所體會但還不夠深刻。因此,運用化歸思想把形式復(fù)雜的不等式轉(zhuǎn)化為x>a或x

  本節(jié)課的教學(xué)難點為:解一元一次不等式步驟的確定。

  四、教學(xué)過程設(shè)計

 。ㄒ唬┮龑(dǎo)觀察 形成概念

  問題 : 觀察下面的不等式,它們有哪些共同特征?

  x—7>26 3x<2x+1

  x>50 —4x>3

  學(xué)生回答,教師可以引導(dǎo)學(xué)生從不等式中未知數(shù)的個數(shù)和次數(shù)兩個方面去觀察不等式的特點,并與一元一次方程的定義類比。

  師生共同歸納獲得:含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式。

  設(shè)計意圖:引導(dǎo)學(xué)生通過觀察給出不等式,歸納出它們的共同特征,進而得到一元一次不等式的定義,培養(yǎng)學(xué)生觀察、歸納的能力。

 。ǘ┩ㄟ^類比 研究解法

  練習(xí):利用不等式的性質(zhì)解不等式x—7>26

  學(xué)生嘗試獨立完成練習(xí)

  教師結(jié)合解題過程,指出:由x—7>26可得到x>26+7,也就是說解不等式和解方程一樣,也可以“移項”,即把不等式一邊的某項變號后移到另一邊,而不改變不等號的方向。

  設(shè)計意圖:通過解簡單的一元一次不等式,讓學(xué)生回憶利用解方程的過程,教師通過簡化練習(xí)中的解題步驟,讓學(xué)生明確不等式和解方程一樣可以“移項”,為下面類比解方程形成解不等式的步驟作好準(zhǔn)備。

  設(shè)問1:解一元一次方程的依據(jù)和一般步驟是什么?

  學(xué)生回憶解一元一次方程的依據(jù)是等式的性質(zhì)。一般步驟是:去分母,去括號,移項,合并同類項,系數(shù)化為1。

  設(shè)問2:解一元一次不等式能否采用類似的步驟?

  學(xué)生討論解一元一次不等式是否可以采用類似的步驟,教師再指出:利用不等式的性質(zhì),采取與解一元一次方程類似的步驟,就可以求出一元一次不等式的解集。

  設(shè)計意圖:通過回憶解一元一次方程的依據(jù)和一般步驟,讓學(xué)生思考解一元一次不等式能否采用同樣步驟,從而獲得解一元一次不等式的思路。

 。ㄈ 例題講解 規(guī)范步驟

  例:解下列不等式,并在數(shù)軸上表示解集

 。1)2(1+x)<3 (2)

  ≥

  設(shè)問(1):解一元一次不等式的目標(biāo)是什么?

  學(xué)生在教師問題的引導(dǎo)下,思考如何將一元一次不等式變形為最簡形式。

  設(shè)問(2):你能類比解一元一次方程的步驟,解第(1)小題嗎?

  由學(xué)生獨立完成,老師評講

  設(shè)問(3)對比不等式

  ≥

  與2(1+x)<3的兩邊,它們在形式上有什么不同?

  設(shè)問(4):怎樣將不等式

  ≥

  變形,使變形后的不等式不含分母?

  小組合作交流,老師點撥

  設(shè)問(5):你能說出解一元一次不等式的基本步驟嗎?

  學(xué)生回答,教師總結(jié):去分母,去括號,移項,合并同類項,系數(shù)化為1。

  設(shè)問(6):對比第(1)小題和第(2)小題的解題過程,系數(shù)化為1時應(yīng)注意些什么?

  學(xué)生回答,教師再強調(diào):要看未知數(shù)系數(shù)的符號,若未知數(shù)的系數(shù)是正數(shù),則不等號的'方向不變,若是負(fù)數(shù),則不等號的方向要改變。

  設(shè)計意圖:通過解具體的一元一次不等式,引導(dǎo)學(xué)生明確解不等式以化歸思想為指導(dǎo),比較原不等式與目標(biāo)形式(x>a或x

 。ㄋ模 辨別異同 深化認(rèn)識

  設(shè)問1:解一元一次不等式和解一元一次方程有哪些相同和不同處?

  學(xué)生在教師的引導(dǎo)下將解一元一次不等式的過程與解一元一次方程的過程進行比較,思考二者的相同和不同處。

  相同之處:基本步驟相同:去分母、去括號、移項、合并同類項、系數(shù)化為1;舅枷胂嗤憾际沁\用化歸思想,都要變?yōu)樽詈喰问健?/p>

  不同之處:解法依據(jù)不同:解不等式是依據(jù)不等式的性質(zhì),解方程依據(jù)等式的性質(zhì)。最簡形式不同:解一元一次不等式:最簡形式是x>a或x

  設(shè)計意圖:在歸納出一元一次不等式的解法之后,引導(dǎo)學(xué)生對比一元一次方程的解法,思考二者的異同,加深對一元一次不等式解法的理解,體會化歸思想和類比思想。

  設(shè)問2: 解一元一次不等式每一步變形的依據(jù)是什么?

  學(xué)生作答,教師再引導(dǎo)學(xué)生體會結(jié)合例題的解題過程思考每一步變形的依據(jù)。

  設(shè)計意圖:通過具體操作,歸納出解一元一次不等式的基本步驟及每一步變形的依據(jù),提高學(xué)生的總結(jié)、歸納能力。

  (五)練習(xí)鞏固 形成能力

  練習(xí):解一元一次不等式

  x≥

  并把它的解集,在數(shù)軸上表示出來。

  學(xué)生獨立解不等式,老師點評

  設(shè)計意圖:學(xué)生獨立按照解集一元一次不等式的步驟解不等式,學(xué)以致用。

 。w納小結(jié) 反思提高

  教師和學(xué)生一起回顧本節(jié)課的學(xué)習(xí)主要內(nèi)容,并請學(xué)生回答以下問題:

 。1)怎樣解一元一次不等式?解一元一次不等式和解一元一次方程有哪些相同和不同處?

 。2)解一元一次不等式運用了哪些數(shù)學(xué)思想?

  設(shè)計意圖:通過問題引導(dǎo)學(xué)生再次回顧本節(jié)課,從數(shù)學(xué)知識,數(shù)學(xué)思想方法等層面,提升對本節(jié)課所研究內(nèi)容的認(rèn)識。

 。ㄆ撸┎贾米鳂I(yè),課外反饋

  教科書習(xí)題9。2第1,2,3題

  設(shè)計意圖:通過課后作業(yè),教師及時了解學(xué)生對本節(jié)課知識的掌握情況,以便對教學(xué)進度和方法進行適當(dāng)?shù)恼{(diào)整。

  五、目標(biāo)檢測設(shè)計

  1、解不等式

 。1)—8x<3 (2)—

  x≥—

  (3)3x—7≥4x—4

  設(shè)計意圖:本題主要考查學(xué)生解一元一次不等式時將系數(shù)化1和移項的準(zhǔn)確性。

  2、解下列不等式,并分別把它們的解集在數(shù)軸上表示

  (1) 3(x+2)—1≥5—2(x—2) (2)

  >—2

  設(shè)計意圖:本題主要考查學(xué)生解一元一次不等式,并在數(shù)軸上表示解集的能力。

  《一元一次不等式》七年級數(shù)學(xué)下冊第1課時教學(xué)設(shè)計 2

  1、教學(xué)資源分析

  采用多媒體課件,導(dǎo)學(xué)案進行教學(xué)。

  2、教學(xué)內(nèi)容分析

  在初中階段,不等式位于一次方程(組)之后,它是進一步探究現(xiàn)實世界數(shù)量關(guān)系的重要內(nèi)容。不等式的研究從最簡單的一元一次不等式開始,一元一次不等式及其相關(guān)概念是本章的基礎(chǔ)知識。解任何一個代數(shù)不等式(組)最終都要化歸為解一元一次不等式,因而解一元一次不等式是一項基本技能。另外,不等式解集的數(shù)軸表示從形的角度描述了不等式的解集,并為解不等式組做了準(zhǔn)備。本節(jié)內(nèi)容是進一步學(xué)習(xí)其他不等式(組)的基礎(chǔ)。

  解一元一次不等式與解一元一次方程在本質(zhì)上是相同的,即依據(jù)不等式的性質(zhì),逐漸將不等式化為x>a或x

  ●重點

  一元一次不等式的解法。

  ●難點

  不等式性質(zhì)3在解不等式中的運用是難點

  3、教學(xué)目標(biāo)分析

  ●目標(biāo)

  1.使學(xué)生了解一元一次不等式的概念;

  2.使學(xué)生掌握一元一次不等式的解法,并能在數(shù)軸上表示其解集。

  3.經(jīng)歷探究一元一次不等式解法的過程,培養(yǎng)學(xué)生獨立思考的習(xí)慣和合作交流的意識。

  ●目標(biāo)解析

  達到目標(biāo)1的標(biāo)志是:學(xué)生能說出一元一次不等式的特征,會解一元一次不等式,并能在數(shù)軸上表示出解集。

  達到目標(biāo)2的標(biāo)志是:學(xué)生能通過類比解一元一次方程的過程,獲得解一元一次不等式的思路,即依據(jù)不等式的性質(zhì),將一元一次不等式逐步化簡為x>a或x

  達到目標(biāo)3的標(biāo)志是:學(xué)生能夠獨立思考后積極參與學(xué)習(xí)中去,在輕松,沒有負(fù)擔(dān)在氛圍中完成對新知的學(xué)習(xí)。

  4、學(xué)習(xí)者特征分析

  本節(jié)課是在學(xué)生了解不等式的解和解集的意義,了解不等式解集的數(shù)軸表示方法,能利用不等式的性質(zhì)對不等式進行簡單變形的基礎(chǔ)上學(xué)習(xí)本課的。現(xiàn)在學(xué)生已經(jīng)具備了一定的自主學(xué)習(xí)的能力,本節(jié)的學(xué)習(xí)中我以問題串的形式貫穿整個教學(xué)過程,引導(dǎo)學(xué)生對比一元一次不等式和一元一次方程的有關(guān)內(nèi)容,尤其是一元一次不等式和一元一次方程解法的比較,有利于對新知識的掌握,同時培養(yǎng)了學(xué)生類比的學(xué)習(xí)方法。

  5、教學(xué)過程設(shè)計

  <一>、問題導(dǎo)入,探索新知1

  問題1:舉出一元一次方程的例子?

  【設(shè)計意圖】復(fù)習(xí)一元一次方程的概念,便于對比探索一元一次不等式概念。這不僅有助于對舊知識的復(fù)習(xí)和鞏固,同時還可以培養(yǎng)學(xué)生的類比和探究能力。

  問題2:

  將學(xué)生舉出的一元一次方程中的等號改寫成不等號。請學(xué)生觀察有哪些共同的特征?

  通過以上問題歸納得到一元一次不等式的概念:只含一個未知數(shù),未知數(shù)的次數(shù)是1的.不等式,叫做一元一次不等式。

  【設(shè)計意圖】問題2采用自主發(fā)現(xiàn)的教學(xué)方法引導(dǎo)學(xué)生從眾多的不等式中,通過歸納其共同特點,得到一元一次不等式的概念,培養(yǎng)了學(xué)生觀察、歸納和語言表達能力。

  問題3:學(xué)生舉一元一次不等式的例子,學(xué)生判斷。

  師:判斷下列各式是否是一元一次不等式?

 、佗冖邰堍茛

  【設(shè)計意圖】此題讓學(xué)生運用概念識別一元一次不等式,考察學(xué)生是否達成教學(xué)目標(biāo)1。

  <二>、探索新知2

  通過前面的學(xué)習(xí),我們知道解不等式的目的,就是將不等式變形成x>a或x

  【設(shè)計意圖】讓學(xué)生明白不管一元一次不等式有多復(fù)雜,最終都可以轉(zhuǎn)化為x>a或x

  師:那怎么來解一元一次不等式呢?有具體的解法嗎?請看下題

  (1)解方程解不等式

  2(1+x)=3 (1) 2(1+x)<3>

 。2)師:對比不等式(2)與2(1+x)<3>

  學(xué)生回答不等式含有分母

  師:怎樣變形使不等式不含分母?

  師生共同去分母解(2)題

  師:通過(1)、(2)題的學(xué)習(xí)你有什么發(fā)現(xiàn)?

  生:解一元一次不等式的解題步驟和解一元一次方程的解題步驟相同,都是:去分母,去括號,移項,合并同類項,系數(shù)化為1.

  師:在解(1)和(2)題的過程中注意些什么?

  生:系數(shù)化為1時,注意未知數(shù)系數(shù)的符號,未知數(shù)的系數(shù)是正數(shù),則不等號的方向不變,若未知數(shù)的系數(shù)是負(fù)數(shù),則不等號的方向改變。

  【設(shè)計意圖】根據(jù)學(xué)生已經(jīng)會解一元一次方程的實際情況,學(xué)生主動地參“探究——討論——交流——總結(jié)”等數(shù)學(xué)活動,把一元一次方程和一元一次不等式進行了對比,實現(xiàn)了知識的自然遷移,使學(xué)生在自主探索和合作交流的過程中不知不覺地學(xué)到了新知識,理解并掌握了解一元一次不等式的一般步驟,教學(xué)重點得以基本達成,教學(xué)難點也取得相應(yīng)突破。

  練習(xí)小明解不等式的過程如下,請找出錯誤之處,并說明錯誤的原因。

  解:2x-2+2<3x>

  2x-3x<-2+2

  -x<0>

  【設(shè)計意圖】“去分母”和“化系數(shù)為1”這兩步都是學(xué)生平時愛出錯的地方,讓學(xué)生對照解一元一次不等式的一般步驟仔細(xì)找出錯誤并說明原因,對提高計算能力很有幫助。

  練習(xí):解一元一次不等式?,并把它的解集在數(shù)軸上表示出來。

  【設(shè)計意圖】學(xué)生獨立按照解一元一次不等式的步驟解不等式。

  <三>歸納總結(jié)

  本節(jié)課你學(xué)會了些什么?

  解一元一次不等式和解一元一次方程有哪些相同和不同之處?

  【設(shè)計意圖】通過問題引導(dǎo)學(xué)生再次回顧本節(jié)課。

  <四>布置作業(yè)

  教科書習(xí)題9.2第1,2,3,題

  <五>目標(biāo)檢測

  解一元一次不等式?,并把它的解集在數(shù)軸上表示出來。

  6、教學(xué)評價的設(shè)計

  本節(jié)課主要以問題串的形式貫穿整個教學(xué)過程,學(xué)生任務(wù)明確。教師在每一個教學(xué)環(huán)節(jié)中灰滲透了類別的學(xué)習(xí)思想,這使學(xué)生在學(xué)習(xí)新知的過程中利用正遷移,在輕松的氛圍中完成了對新知的學(xué)習(xí)。課上回答的問題及解題在正確率以小組的得分的形式計入到小組教學(xué)成績?nèi)粘Tu比中。

  《一元一次不等式》七年級數(shù)學(xué)下冊第1課時教學(xué)設(shè)計 3

  【知識與技能】

  1、了解一元一次不等式組的概念。

  2、理解一元一次不等式組的解集,能求一元一次不等式組的解集。

  3、會解一元一次不等式組。

  【過程與方法】

  通過具體問題得到一元一次不等式組,從而了解一元一次不等式組的概念,解出每個不等式,利用數(shù)軸求出各不等式解集的公共部分,從而得到不等式組的解集,通過解幾個有代表性的一元一次不等式組,總結(jié)出求不等式組解集的法則。

  【情感態(tài)度】

  運用數(shù)軸確定不等式組的解集是行之有效的方法。這種“數(shù)形結(jié)合”的方法今后經(jīng)常用到,鍛煉同學(xué)們數(shù)形結(jié)合的能力,提高學(xué)習(xí)興趣。

  【教學(xué)重點】

  一元一次不等式組的解法。

  【教學(xué)難點】

  確定一元一次不等式組的解集。

  一、情境導(dǎo)入,初步認(rèn)識

  問題1現(xiàn)有兩根木條a和b,a長10cm,b長3cm,如果要再找一根木條c,用這三根木條釘成一個三角形木框,那么木條c的長度有什么要求?

  解:由于三角形中兩邊之____大于第三邊,兩邊之____小于第三邊,設(shè)c的長為xcm,則x<____,①x>____,②合起來,組成一個__________。

  由①解得_____________,由②解得_____________。

  在數(shù)軸上表示就是________________。

  容易看出:x的取值范圍是____________________。

  這就是說,當(dāng)木條c比____cm長并且比____cm短時,它能與木條a和b一起釘成三角形木框。

  問題2由上面的解不等式組的過程用自己的'語言歸納出一元一次不等式組的解法。

  【教學(xué)說明】

  全班同學(xué)可獨立作業(yè),也可分組自由討論,10分鐘后交流成果,逐步得出結(jié)論。

  二、思考探究,獲取新知

  思考什么叫一元一次不等式組,什么叫一元一次不等式組的解集,什么叫解不等式組?

  【歸納結(jié)論】

  1、定義:

 。1)一元一次不等式組:幾個含有相同未知數(shù)的一元一次不等式合起來組成一個一元一次不等式組。

  (2)一元一次不等式組的解集:幾個不等式的解集的公共部分,叫做由它們所組成的不等式的解集。

  (3)解不等式組:求一元一次不等式組的解集的過程叫解一元一次不等式組。

  2、一元一次不等式組的解法:

  (1)求出每個一元一次不等式的解集。

 。2)求出這些解集的公共部分,便得到一元一次不等式組的解集。

  《一元一次不等式》七年級數(shù)學(xué)下冊第1課時教學(xué)設(shè)計 4

  【基于課標(biāo)】

  會用數(shù)軸確定由兩個一元一次不等式組成的不等式組的解集

  【基于對教材的理解】

  一元一次不等式組是河南中考的必考內(nèi)容,近五年的考卷多以填空選擇出現(xiàn)。教材在這部分以解不等式組和確定解集為重點,中招考試落腳點也在于此。并且這部分內(nèi)容常常結(jié)合一次函數(shù)、反比例函數(shù)來確定函數(shù)值范圍。

  【基于對學(xué)情的分析】

  1、學(xué)生已有知識基礎(chǔ)。

  九年級學(xué)生已經(jīng)初步掌握了初中三年的數(shù)學(xué)知識,經(jīng)歷了一元一次方程、一次函數(shù)、一元一次不等式的學(xué)習(xí),積累一定的知識基礎(chǔ)。大部分學(xué)生能夠解一元一次不等式,但是基礎(chǔ)薄弱的學(xué)生在用數(shù)軸確定解集時方向會出錯。一元一次不等式解集的應(yīng)用,確定字母的值或范圍,很多學(xué)生在此容易迷惑,到底是未知數(shù)的范圍還是字母的范圍。

  2、已有的活動經(jīng)驗

  九年級學(xué)生具備一定的自學(xué)、交流、表達能力,具備有條理的.思考分析和書寫解答過程能力,思維正逐步由具體走向抽象。但是目前更多的還傾向于通過具體的問題來理解定義、定理和性質(zhì)。

  3、學(xué)習(xí)本節(jié)可能出現(xiàn)的難點

 。1)用數(shù)軸確定不等式組解集。

 。2)用不等式組解集確定字母的值或范圍。

  【學(xué)習(xí)目標(biāo)】

  1、通過具體舉例分析,會用不等式基本性質(zhì)解一元一次不等式組。

  2、會用數(shù)軸正確表示一元一次不等式組的解集。

  3、能根據(jù)不等式組的解集確定字母的值或范圍。

  【學(xué)習(xí)重點】

  解一元一次不等式組

  【學(xué)習(xí)難點】

 。1)數(shù)軸確定一元一次不等式組解集

 。2)用不等式組解集確定字母的值或范圍

  【評價任務(wù)】

  1、能用待定系數(shù)法求二次函數(shù)表達式。

  2、能用頂點坐標(biāo)公式或配方法求出二次函數(shù)最值。

  3、能用五點法畫出二次函數(shù)圖象。

  【評價標(biāo)準(zhǔn)】

  1、學(xué)生能通過看課本,說出這節(jié)課復(fù)習(xí)主要內(nèi)容和重點

  2、學(xué)生能正確舉出一元一次不等式組的例子,并自主解答

  3、學(xué)生通過借助數(shù)軸,能正確表示不等式組的解集

  4、學(xué)生積極參與討論,能用所給解集求出不等式組中字母的值或范圍。

  【評價方式】

  以交流式評價和表現(xiàn)性評價和檢測為主要方式進行。

  1、交流式評價。

  通過師生、生生對話交流,及時對學(xué)生進行評價。

  評價內(nèi)容如下:根據(jù)學(xué)生對以下活動的開展情況檢測任務(wù)的完成。

  針對評價任務(wù)1:

  請一兩位同學(xué)說說這節(jié)復(fù)習(xí)課的主要知識點和復(fù)習(xí)重點。

  針對評價任務(wù)2:

 。1)請同學(xué)舉一個一元一次不等式組的例子,并請該同學(xué)上臺板演解答過程。

  (2)結(jié)合學(xué)生給出的例子,再畫出另外三種解集情況,學(xué)生單獨回答不等式解集。

  針對評價任務(wù)3:

  小組討論交流,選出中心發(fā)言人回答確定字母值或范圍的方法。

  2、表現(xiàn)性評價。

  通過獨立思考,互學(xué),師生互動、生生互動觀察學(xué)生在活動中的表現(xiàn)以及回答問題情況對學(xué)生進行評價。

  3、檢測評價。

  通過當(dāng)堂檢測3個小題,對學(xué)生進行檢測性評價。

  【學(xué)習(xí)過程】

  一、復(fù)習(xí)引入

  1、回顧上節(jié)課復(fù)習(xí)內(nèi)容

  2、呈現(xiàn)課標(biāo)要求

  3、呈現(xiàn)本節(jié)復(fù)習(xí)內(nèi)容在中考中的出題方向和題型

  4、明確本節(jié)復(fù)習(xí)目標(biāo)

  二、基礎(chǔ)鞏固

  任務(wù)1:重回課本鞏固概念

 。1)閱讀八下課本56頁——59頁,概括出主要內(nèi)容和重點。(多媒體展示主要內(nèi)容,學(xué)生齊讀一遍,再強調(diào)重點是解不等式組。)

  任務(wù)2:解一元一次不等式組并確定其解集

 。2)學(xué)生舉一個一元一次不等式組的例子,全班同學(xué)一起求解,并要求在解題后總結(jié)易錯點。

 。ㄕ堃晃煌瑢W(xué)板演過程,批改時用彩色粉筆標(biāo)出易錯之處。)

 。3)不等式組的解集,我們是通過數(shù)軸來確定的,F(xiàn)在老師把這條數(shù)軸上的解集范圍變化一下,請你再確定解集范圍。

 。ㄟ有三種情況,在黑板上畫出來,提問學(xué)生回答。)

  《一元一次不等式》七年級數(shù)學(xué)下冊第1課時教學(xué)設(shè)計 5

  教學(xué)目標(biāo):

 。ㄖR與技能,過程與方法,情感態(tài)度價值觀)

 。ㄒ唬┙虒W(xué)知識點

  1.一元一次不等式與一次函數(shù)的關(guān)系.

  2.會根據(jù)題意列出函數(shù)關(guān)系式,畫出函數(shù)圖象,并利用不等關(guān)系進行比較.

  (二)能力訓(xùn)練要求

  1.通過一元一次不等式與一次函數(shù)的圖象之間的結(jié)合,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識.

  2.訓(xùn)練大家能利用數(shù)學(xué)知識去解決實際問題的能力.

  (三)情感與價值觀要求

  體驗數(shù)、圖形是有效地描述現(xiàn)實世界的重要手段,認(rèn)識到數(shù)學(xué)是解決問題和進行交流的重要工具,了解數(shù)學(xué)對促進社會進步和發(fā)展人類理性精神的作用.

  教學(xué)重點

  了解一元一次不等式與一次函數(shù)之間的關(guān)系.

  教學(xué)難點

  自己根據(jù)題意列函數(shù)關(guān)系式,并能把函數(shù)關(guān)系式與一元一次不等式聯(lián)系起來作答.

  教學(xué)過程

  創(chuàng)設(shè)情境,導(dǎo)入課題,展示教學(xué)目標(biāo)

  1.張大爺買了一個手機,想辦理一張電話卡,開米廣場移動通訊公司業(yè)務(wù)員對張大爺介紹說:移動通訊公司開設(shè)了兩種有關(guān)神州行的通訊業(yè)務(wù):甲類使用者先繳15元基礎(chǔ)費,然后每通話1分鐘付話費0.2元;乙類不交月基礎(chǔ)費,每通話1分鐘付話費0.3元。你能幫幫張大爺選擇一種電話卡嗎?

  2.展示學(xué)習(xí)目標(biāo):

  (1)、理解一次函數(shù)圖象與一元一次不等式的關(guān)系。

 。2)、能夠用圖像法解一元一次不等式。

 。3)、理解兩種方法的關(guān)系,會選擇適當(dāng)?shù)姆椒ń庖辉淮尾坏仁健?/p>

  積極思考,嘗試回答問題,導(dǎo)出本節(jié)課題。

  閱讀學(xué)習(xí)目標(biāo),明確探究方向。

  從生活實例出發(fā),引起學(xué)生的好奇心,激發(fā)學(xué)生學(xué)習(xí)興趣

  學(xué)生自主研學(xué)

  指出探究方向,巡回指導(dǎo)學(xué)生,答疑解惑

  探究一:一元一次不等式與一次函數(shù)的關(guān)系。

  問題1:結(jié)合函數(shù)y=2x-5的圖象,觀察圖象回答下列問題:

  (1) x取何值時,2x-5=0?

  (2) x取哪些值時, 2x-5>0?

  (3) x取哪些值時, 2x-5<0?

  (4) x取哪些值時, 2x-5>3?

  問題2:如果y=-2x-5,那么當(dāng)x取何值時,y>0 ? 當(dāng)x取何值時,y<1 ?

  你是怎樣求解的?與同伴交流

  讓每個學(xué)生都投入到探究中來養(yǎng)成自主學(xué)習(xí)習(xí)慣

  小組合作互學(xué)

  巡回每個小組之間,鼓勵學(xué)生用不同方法進行嘗試,尋找最佳方案。答疑展示中存在的問題。

  探究二:一元一次不等式與一次函數(shù)關(guān)系的簡單應(yīng)用。

  問題3.兄弟倆賽跑,哥哥先讓弟弟跑9 m,然后自己才開始跑,已知弟弟每秒跑3 m,哥哥每秒跑4 m,列出函數(shù)關(guān)系式,畫出函數(shù)圖象,觀察圖象回答下列問題:

 。1)何時哥哥分追上弟弟?

  (2)何時弟弟跑在哥哥前面?

 。3)何時哥哥跑在弟弟前面?

  (4)誰先跑過20 m?誰先跑過100 m?

  你是怎樣求解的?與同伴交流。

  問題4:已知y1=-x+3,y2=3x-4,當(dāng)x取何值時,y1>y2?你是怎樣做的?與同伴交流.

  讓學(xué)生體會數(shù)形結(jié)合的魅力所在。理解函數(shù)和不等式的聯(lián)系。

  精講點撥

  移動通訊公司開設(shè)了兩種長途通訊業(yè)務(wù):全球通使用者先繳50元基礎(chǔ)費,然后每通話1分鐘付話費0.4元;神州行不交月基礎(chǔ)費,每通話1分鐘付話費0.6元。若設(shè)一個月內(nèi)通話x分鐘,兩種通訊方式的費用分別為y1元和y2元,那么

 。1)寫出y1、y2與x之間的'函數(shù)關(guān)系式;

 。2)在同一直角坐標(biāo)系中畫出兩函數(shù)的圖象;

 。3)求出或?qū)で蟪鲆粋月內(nèi)通話多少分鐘,兩種通訊方式費用相同;

 。4)若某人預(yù)計一個月內(nèi)使用話費200元,應(yīng)選擇哪種通訊方式較合算?

  在共同探究的過程中加強理解,體會數(shù)學(xué)在生活中的重大應(yīng)用,進行能力提升。

  提高學(xué)生應(yīng)用數(shù)學(xué)知識解決實際問題的能力

  達標(biāo)檢測

  展示檢測內(nèi)容

  積極完成導(dǎo)學(xué)案上的檢測內(nèi)容,相互點評。

  反饋學(xué)生學(xué)習(xí)效果

  知識與收獲

  引導(dǎo)學(xué)生歸納探究內(nèi)容

  學(xué)生回顧總結(jié)學(xué)習(xí)收獲,交流學(xué)習(xí)心得。

  學(xué)會歸納與總結(jié)

  布置作業(yè)

  教材P51.習(xí)題2.6知識技能1;問題解決2,3.

  板書設(shè)計

  §2.5 一元一次不等式與一次函數(shù)(一)

  一、學(xué)習(xí)與探究:

  1.一元一次不等式與一次函數(shù)之間的關(guān)系;

  2.做一做(根據(jù)函數(shù)圖象求不等式);

  3.試一試(當(dāng)x取何值時,y>0);

  4.議一議

  二、精講點撥:

  三、知識與收獲:

  四、課后作業(yè):

  《一元一次不等式》七年級數(shù)學(xué)下冊第1課時教學(xué)設(shè)計 6

  教學(xué)目標(biāo):

  了解一元一次不等式的概念,掌握一元一次不等式的解法。

  教學(xué)重點:

  是掌握解一元一次不等式的步驟。

  教學(xué)難點:

  是必須切實注意遇到要在不等式兩邊都乘以(或除以)同一負(fù)數(shù)時,必須改變不等號的方向。

  教學(xué)過程:

  一、問題導(dǎo)入

  復(fù)習(xí):

  1、不等式的基本性質(zhì)有哪些?什么是一元一次方程?并舉出兩個例子。

  2、觀察不等式x+3<5與x<2,說明解x<2是x+3<5依據(jù)什么變形得到的?

  3、解一元一次方程:6x+ 5=7-2x,目的是為了與下面所學(xué)的解一元一次不等式進行類比,找到它們的聯(lián)系與區(qū)別。

  二、指導(dǎo)自學(xué),小組合作交流

  請同學(xué)們根據(jù)以下提問進行自學(xué),先個人思考,后小組合作學(xué)習(xí)。

  1、觀察下列不等式,說一說這些不等式有哪些共同特點?

 。1)2x+5 ≥8 (2)x+1≤-4 ( 3)x<2 (4)6-3x>4 3(x+1)≤0

  觀察上面不等式有哪些共同特點,讓學(xué)生通過交流,再總結(jié)一元一次不等式的概念。老師板書定義。

  2、讓學(xué)生舉出2或3個一元一次不等式的例子,小組交流。

  3、讓學(xué)生通過比較解一元一次方程:6x+ 5=7-2x的解法試解一元一次不等式:6x+ 5<7-2x,并將解集在數(shù)軸上表示出來。

  4、思考:一元一次不等式與一元一次方程的解法有哪些類似之處?有什么不同?

  5、解下列不等式,并把它們的解集在數(shù)軸上表示出來。

  (1)3-x < 2x +9 (2)2-4(x-1)> 3(x+2) -x

 。3)(x-1)/ 3≥(2-x)/2+1

  總結(jié):解一元一次不等式的依據(jù)和解一元一次不等式的步驟。

  三、互動交流,教師點撥

 。ㄒ唬、學(xué)生易出錯的問題和注意的事項:

  1、確定一個不等式是不是一元一次不等式,要抓住三個要點:左右兩邊都是整式,只有一個未知數(shù),未知數(shù)的次數(shù)是1。

  2、對于(1),讓學(xué)生說明不等式3-x < 2x + 9的每一步變形的依據(jù)是什么,特別注意的是:解不等式的移項和解方程的移項一樣。即移項要變號(培養(yǎng)學(xué)生運用類比的'數(shù)學(xué)思想)。

  3、不等式兩邊同時除以(-3)時,不等號的方向改變。

  2、重點點撥(2)和(3),先讓學(xué)生到黑板上板演。老師再講評。

 。2)易出錯的地方是:去括號時漏乘,括號前是負(fù)號,去掉括號后括號里的項沒變號,還有移項沒有變號;(3)易出錯的地方是:去分母時漏乘無分母的項。

  3、歸納解一元一次不等式的步驟(與解一元一次方程的步驟類比):去分母,去括號,移項,合并同類項,系數(shù)化為1。(在系數(shù)化為1這一步要特別提醒學(xué)生注意當(dāng)系數(shù)為負(fù)數(shù)時,要記住改變不等號的方向。)

  四、 鞏固練習(xí)

  1、判斷下列不等式是不是一元一次不等式,為什么?

 。1)2/x—3<5x+3

  (2) 5x+3<0 2="">x–1

  2、解下列不等式,并把它們的解集在數(shù)軸上表示出來

 。1)3x–8<5x+12

  (2)2(x–1)≥x+3

 。3)x/5≥1+(x–3)/ 2

  3、[思考]當(dāng)x取何值時,代數(shù)式(x–2)/2的值比(3x+1)/3的值大?

  小結(jié):

 。1)不等式兩邊同時除以負(fù)數(shù)時,不等號的方向要改變。

  (2)注意去括號時不要漏乘,括號前是負(fù)號,去掉括號后括號里的項要變號,還有移項一定要變號

  (3)去分母時不要漏乘無分母的項。

  《一元一次不等式》七年級數(shù)學(xué)下冊第1課時教學(xué)設(shè)計 7

  教學(xué)目標(biāo)

  1、使學(xué)生掌握不等式的三條基本性質(zhì);

  2、培養(yǎng)學(xué)生觀察、分析、比較的能力,提高他們靈活地運用所學(xué)知識解題的能力。

  教學(xué)重點和難點

  重點:不等式的三條基本性質(zhì)的運用。

  難點:不等式的基本性質(zhì)3的運用。

  課堂教學(xué)過程設(shè)計

  一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

  1、什么叫不等式?說出不等式的三條基本性質(zhì)。

  2、 當(dāng)x取下列數(shù)值時,不等式1-5x<16是否成立?

  3,-4,-3,4,2.5,0,-1。

  3、用不等式表示下列數(shù)量關(guān)系:

 。1) x的3倍大于x的2倍與5的'差;

 。3)y的與x的的差小于2;

 。2) y的一半與4的和是負(fù)數(shù);

 。4)5與a的4倍的差不是正數(shù)。

  4、按照下列條件寫出仍然成立的不等式,并說明根據(jù)不等式的哪一條基本性質(zhì):

 。1)m>n,兩邊都減去3;

 。2)m>n,兩邊同乘以3;

 。3)m>n,兩邊同乘以-3;

 。4)m>n,兩邊同乘以-3;

  (5)m>n,兩邊同乘以 。

 。ㄒ陨细黝}中,從第2題開始,用投影儀打在屏幕上。學(xué)生在回答上述問題時,如遇到困難,教師應(yīng)做適當(dāng)點撥)在學(xué)生回答完上述問題的基礎(chǔ)上,教師指出:本節(jié)課我們將通過學(xué)習(xí)例題和練習(xí),進一步鞏固并熟練掌握不等式的基本性質(zhì),尤其是不等式基本性質(zhì)。

  二、講授新課

  例1 在下列各題橫線上填入不等號,使不等式成立。并說明是根據(jù)哪一條不等式基本性質(zhì)。

 。1)若a–3<9,則a_____12;

  (2)若-a<10,則a_____–10;

 。3)若a>–1,則a_____–4;

 。4)若-a>,則a_____0。

  答:(1)a<12,根據(jù)不等式基本性質(zhì)1。

 。2)a>-10,根據(jù)不等式基本性質(zhì)3。

 。3)a>-4,根據(jù)不等式基本性質(zhì)2。

  (4)a<0,根據(jù)不等式基本性質(zhì)3。

 。ㄔ谥v授本課時,應(yīng)啟發(fā)學(xué)和在添加不等號“>”或“<”時,要和題目中的已知條件進行對比,觀察它是根據(jù)不等式的哪條基本性質(zhì),是怎樣由已知條件變形得到的。同時還應(yīng)強調(diào)在運用不等式基本性質(zhì)3時,不等號要改變方向=

  例2 已知,用a<0,“<”或“>”號填空:

 。1)a+2_____2; (2)a-1_____–1; (3)3a_____0; (4)a-1______0; (5)a2 _______0; (6)a3______0; (7)a-1______0; (8)|a|______0。

  答:(1)a+2<2,根據(jù)不等式基本性質(zhì)1。

 。ǎ玻゛-1<-1,根據(jù)不等式基本性質(zhì)1。

 。ǎ常┮驗椋砤,根據(jù)不等式基本性質(zhì)2。

 。ǎ矗荆,根據(jù)不等式基本性質(zhì)3。

  (5)因為a<0,兩邊同乘以a<0,由不等式基本性質(zhì)3,得a2>0。

 。ǎ叮┮驗閍<0,兩邊同乘以a2>0,由不等式基本性質(zhì)2,得a3<0。

 。ǎ罚┮驗閍<0,兩邊同加上-1,由不等式基本性質(zhì)1,得a-1<-1。

  又已知,-1<0,所以a-1<0。

  (8)因為。a<0,所以a≠0,所以|a|>0。

 。ū纠}除了進一步運用不等式的三條基本性質(zhì)外,還涉及了一些舊的基礎(chǔ)知識,如a<0表示a是負(fù)數(shù);a>0表示a是正數(shù);|a|是非負(fù)數(shù).后面幾個小題較靈活,條件由具體數(shù)字改為抽象的字母,這里字母代表正數(shù)還是代表負(fù)數(shù)是解決問題的關(guān)鍵)

  例外 判斷下列各題的推導(dǎo)是否正確?為什么?(投影)(請學(xué)生回答)

  (1)因為7.5>5.7,所以-7.5<-5.7;

 。ǎ玻┮驗閍+8>4,所以a>-4;

  (3)因為4a>4b,所以a>b;

 。ǎ矗┮驗閍<b,所以<>'

 。ǎ担┮驗椋荆保詀>4;

  (6)因為-1>-2,所以-a-1>-a-2;

 。ǎ罚┮驗椋常荆,所以3a>2a。

  答:

 。ǎ保┱_,根據(jù)不等式基本性質(zhì)3。

 。ǎ玻┱_,根據(jù)不等式基本性質(zhì)1。

 。ǎ常┱_,根據(jù)不等式基本性質(zhì)2。

 。ǎ矗┎粚,根據(jù)不等式基本性質(zhì)3,應(yīng)改為>;

 。ǎ担┮驗椋荆保詀>4

  答:(1)正確,根據(jù)不等式基本性質(zhì)3。

  (2)正確,根據(jù)不等式基本性質(zhì)1。

  (3)正確,根據(jù)不等式基本性質(zhì)2。

  (4)不對,根據(jù)不等式基本性質(zhì)3,應(yīng)改為。

  (5)不對,根據(jù)不等式基本性質(zhì)5,應(yīng)改為a<4。

  (6)正確,根據(jù)不等式基本性質(zhì)1。

  (7)不對,應(yīng)分情況逐一討論。

  當(dāng)a>0時,3a>2a。(不等式基本性質(zhì)2)

  當(dāng)a=0時,3a<2a。

  當(dāng)a<0時,3a<2a。(不等式基本性質(zhì)3)

  (當(dāng)學(xué)生在回答本題的過程當(dāng)中,當(dāng)遇到困難或問題時,教師應(yīng)做適當(dāng)引導(dǎo)、啟發(fā)、幫助)

  三、課堂練習(xí)(投影)

  1。按照下列條件,寫出仍能成立的不等式:

  (1)由-2<-1,兩邊都加-a; (2)由-4x<0,兩邊都乘以-;

  (3)由7>5,兩邊都乘以不為零的-a。

  2?用“>”或“<”號填空:

  (1)當(dāng)a-b<0時,a______b: (2)當(dāng)a<0,b<0時,ab_____0;

  (3)當(dāng)a<0,b<0時,ab____0; (4)當(dāng)a>0,b<0時,ab____0;

  (5)若a____0,b<0,則ab>0; (6)若<0,且b<0,則a_____0。

  四、師生共同小結(jié)

  在師生共同回顧本節(jié)課所學(xué)內(nèi)容的基礎(chǔ)上,教師指出:①在利用不等式的基本性質(zhì)進行變形時,當(dāng)不等式的兩邊都乘以(或除以)同一個字母,字母代表什么數(shù)是問題的關(guān)鍵,這決定了是用不等式基本性質(zhì)2還是基本性質(zhì)3,也就是不等號是否要改變方向的問題;②運用不等式基本性質(zhì)3時,要變兩個號,一個性質(zhì)符號,另一個是不等號。

  五、作業(yè)

  1.根據(jù)不等式的基本性質(zhì),把下列不等式化成“x>a”或“x<a”的形式:

  (1)x-1<0;

  (2)x>-x+6;

  (3)3x>7;

  (4)-x<-3。

  2.設(shè)a<b,用“>”或“>”號連接下列各題中的兩個代數(shù)式:

  (1)a-1,b-1;

  (2)a+2,b+2; (3)2a,2b;

  (4);

  (5); (6)-b,-a。

  3.用“>”號或“<”號填空:

  (1)若a-b<0,則a_____b;

  (2)若b<0,則a+b_____a;

  (3)若a=0,則a+b_____b;

  (4)若<0,則ab_____;

  (5)b<a<2,則(a-2)(b-2)____0;(2-a)(2-b)____;(2-a)(a-b)。

  《一元一次不等式》七年級數(shù)學(xué)下冊第1課時教學(xué)設(shè)計 8

  教學(xué)目標(biāo)

  1、能夠根據(jù)實際問題中的數(shù)量關(guān)系,列一元一次不等式(組)解決實際問題。

  2、通過例題教學(xué),學(xué)生能夠?qū)W會從數(shù)學(xué)的角度認(rèn)識問題,理解問題,提出問題, 學(xué)會從實際問題中抽象出數(shù)學(xué)模型。

  3、能夠認(rèn)識數(shù)學(xué)與人類生活的密切聯(lián)系,培養(yǎng)學(xué)生應(yīng)用所學(xué)數(shù)學(xué)知識解決實際問題的意識。

  教學(xué)重點: 能夠根據(jù)實際問題中的數(shù)量關(guān)系,列出一元一次不等式(組)解決 實際問題

  教學(xué)難點: 審題,根據(jù)實際問題列出不等式。

  例題: 甲、乙兩商場以同樣的價格出售同樣的商品,并且又各自推出不同的優(yōu)惠方案:在甲商場累計購物超過100元后,超出100元的部分按90%收費;在乙商場累計購物超過50元后,超出50元的'部分按95%收費。顧客到哪家商場購物花費少

  解:設(shè)累計購物x元,根據(jù)題意得

  (1)當(dāng)0 < x≤50時,到甲、乙兩商場購物花費一樣;

 。2)當(dāng)50< x≤100時,到乙商場購物花費少;

  (3)當(dāng)x > 100時,到甲商場的花費為100+0.9(x-100) , 到乙商場的花費為50+0.95(x-50)則

  50+0.95(x-50) > 100+0.9(x-100),解之得x >150

  50+0.95(x-50) < 100+0.9(x-100),解之得x < 150

  50+0.95(x-50) = 100+0.9(x-100), 解之得x = 150

  答:當(dāng)0 < x≤50時,到甲、乙兩商場購物花費一樣;

  當(dāng)50< x≤100時,到乙商場購物花費少;當(dāng)x>150時,到甲商場購物花費少;當(dāng)100 < x <150時,到乙商場購物花費少;當(dāng)x=150時,到甲、乙兩商場購物花費一樣。

  變式練習(xí),學(xué)校為解決部分學(xué)生的午餐問題,聯(lián)系了兩家快餐公司,兩家公司的報價、質(zhì)量和服務(wù)承諾都相同,且都表示對學(xué)生優(yōu)惠:甲公司表示每份按報價的90%收費,乙公司表示購買100份以上的部分按報價的80%收費。問:選擇哪家公司較好?

  解:設(shè)購買午餐x份,每份報價為“1”,根據(jù)題意得

  0.9x > 100+0.8(x-100),解之得x >200

  0.9x < 100+0.8(x-100),解之得x < 200

  0.9x = 100+0.8(x-100),解之得x = 200

  答:當(dāng)x>200時,選乙公司較好;當(dāng)0 < x <200時,選甲公司較好;當(dāng)x=200時,兩公司實際收費相同。

  作業(yè)

  1、某商店5月1號舉行促銷優(yōu)惠活動,當(dāng)天到該商店購買商品有兩種方案,方案一:用168元購買會員卡成為會員后,憑會員卡購買商店內(nèi)任何商品,一律按商品價格的8折優(yōu)惠;方案二:若不購買會員卡,則購買商店內(nèi)任何商品,一律按商品價格的9.5折優(yōu)惠。已知小敏5月1日前不是該商店的會員。請幫小敏算一算,采用哪種方案更合算?

  2、某單位計劃10月份組織員工到杭州旅游,人數(shù)估計在10~25之間。甲乙兩旅行社的服務(wù)質(zhì)量相同,且組織到杭州旅游的價格都是每人200元。該單位聯(lián)系時,甲旅行社表示可以給予每位旅客七五折優(yōu)惠;乙旅行社表示可先免去一帶隊領(lǐng)導(dǎo)的旅游費用,其余游客八折優(yōu)惠。問該單位怎樣選擇,可使其支付的旅游總費用較少?

  《一元一次不等式》七年級數(shù)學(xué)下冊第1課時教學(xué)設(shè)計 9

  學(xué)習(xí)目標(biāo):

  1、了解一元一次不等式組的概念,理解一元一次不等式組的解集的意義。

  2、會解由兩個一元一次不等式組成的一元一次不等式組,能借助數(shù)軸正確的表示一元一次不等式組的解集。

  3、通過探討一元一次不等式組的'解法以及解集的確定,滲透轉(zhuǎn)化思想,進一步感受數(shù)形結(jié)合在解決問題中的作用。

  4、體驗不等式在實際問題中的作用,感受數(shù)學(xué)的應(yīng)用價值。

  學(xué)習(xí)重點:

  一元一次不等式組的解法

  學(xué)習(xí)難點:

  一元一次不等式組解集的確定。

  一、學(xué)前準(zhǔn)備

  【回顧】

  1.解不等式 ,并把解集在數(shù)軸上表示出來。

  【預(yù)習(xí)】

  1、 認(rèn)真閱讀教材34-35頁內(nèi)容

  2、____________ _ 叫做一元一次不等式組。

  ______ _______叫做一元一次不等式組的解集。

  叫做解不等式組。

  4、求下列兩個不等式的解集,并在同一條數(shù)軸上表示出來

 、

  二、探究活動

  【例題分析】

  例1. (問題1)題中的買5筒錢不夠,買4筒錢又多的含義是什么?

  例2. (問題2)題中的相等關(guān)系是什么?不等關(guān)系又是什么?

  例3. 解不等式組

  【小結(jié)】

  不等式組解集口訣

  同大取大,同小取小,大小小大中間找,大大小小解不了

  一元一次不等式組解集四種類型如下表:

  不等式組(a

  (1)xb

  xb 同大取大

  (2)x

  x

  (3)xax

  a

  (4)xb

  無解 大大小小解不了

  【課堂檢測】

  1、不等式組 的解集是( )

  A. B. C. D.無解

  2、不等式組 的解集為( )

  A.-1

  3、不等式組 的解集在數(shù)軸上表示正確的是( )

  A B C D

  4、寫出下列不等式組的解集:(教材P35練習(xí)1)

  三、自我測試

  1.填空

  (1)不等式組x-1 的解集是_ __;

  (2)不等式組x-2 的解集 ;

  (3)不等式組x1 的解集是__ __;

  (4)不等式組x-4 解集是___ ___。

  2、解下列不等式組,并在數(shù)軸上表示出來

  (1)

  四、應(yīng)用與拓展

  若不等式組 無解,則m的取值范圍是 ____ _____.

  《一元一次不等式》七年級數(shù)學(xué)下冊第1課時教學(xué)設(shè)計 10

  (一)教材分析

  本節(jié)課的內(nèi)容,是人教版七年級下冊第九章第二節(jié)“實際問題與一元一次不等式”。它是在學(xué)習(xí)不等式的概念、性質(zhì)及其解法和運用一元一次方程(或方程組)解決實際問題等知識的基礎(chǔ)上,利用不等式解決實際問題。這既是對已學(xué)知識的運用和深化,又為今后在解決實際問題中提供另一種有效的解決途徑。通過實際問題的探究,讓學(xué)生學(xué)會列一元一次不等式,解決具有不等關(guān)系的實際問題。經(jīng)歷由實際問題轉(zhuǎn)化為數(shù)學(xué)問題的過程,掌握利用一元一次不等式解決問題的基本過程。促進學(xué)生的數(shù)學(xué)思維意識,從而使學(xué)生樂于接觸社會環(huán)境中的數(shù)學(xué)信息,愿意談?wù)撃承⿺?shù)學(xué)話題,能夠在數(shù)學(xué)活動中發(fā)揮積極作用。同時向?qū)W生滲透由特殊到一般、類比、建模和分類考慮問題的思想方法。不等式與現(xiàn)實生活中聯(lián)系非常緊密,解決好這類應(yīng)用題,有助于學(xué)生在以后的日常生活中自主靈活應(yīng)用所學(xué)知識解決實際問題。

  (二)學(xué)情分析

  七2班班現(xiàn)有56名同學(xué),部分學(xué)生基礎(chǔ)較差,拔尖學(xué)生少,尤其個別學(xué)生底子太薄,學(xué)生學(xué)習(xí)較為被動,預(yù)習(xí)工作做得不夠認(rèn)真,同時學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性不高,基本能力較差,解決問題的能力不強,知識掌握不夠扎實,運用不夠靈活。從學(xué)生學(xué)習(xí)的心理基礎(chǔ)和認(rèn)知特點來說:學(xué)生已經(jīng)在前一階段學(xué)習(xí)的學(xué)習(xí)中已經(jīng)具備了實際問題建立一元一次方程和解一元一次方程的一般步驟的基礎(chǔ),能進行數(shù)學(xué)建模和簡單的解釋應(yīng)用。雖然初一學(xué)生對消費問題比較熱心,但由于年紀(jì)太小,缺少生活經(jīng)驗,由于本節(jié)問題的背景和表達都比較貼近實際,其中有些數(shù)量關(guān)系比較隱蔽,可能會產(chǎn)生一定的障礙。

  (三)設(shè)計的目的及意義

  一元一次不等式的應(yīng)用,是中學(xué)數(shù)學(xué)的重要內(nèi)容,和一元一次方程應(yīng)用相似,對培養(yǎng)學(xué)生分析問題、解決問題的能力,體會數(shù)學(xué)的價值都有較大的意義.對實際生活中的不等量關(guān)系、數(shù)量大小比較等知識,學(xué)生在小學(xué)階段已經(jīng)有所了解.但用不等式表示,并對不等式的相關(guān)性質(zhì)進行探究,對學(xué)生是新的內(nèi)容。這些問題能培養(yǎng)學(xué)生思維的'深刻性和靈活性,優(yōu)化學(xué)生的思維品質(zhì)。分組活動,先獨立思考,再組內(nèi)交流,然后各組匯報討論結(jié)果,可極大調(diào)動學(xué)生的創(chuàng)造積極性,應(yīng)把握學(xué)生的創(chuàng)新潛能,使不同層次的學(xué)生都能得到發(fā)展。在實施教學(xué)時,要根據(jù)課程改革的基本理念和教材特點組織教學(xué).結(jié)合具體內(nèi)容,讓學(xué)生經(jīng)歷知識的形成與應(yīng)用過程。

  (四)實施過程

  【教學(xué)目標(biāo)】

  知識目標(biāo):能進一步熟練的解一元一次不等式,會從實際問題中抽象出數(shù)學(xué)模型,會用一元一次不等式解決簡單的實際問題。

  能力目標(biāo):通過觀察、實踐、討論等活動,積累利用一元一次不等式解決實際問題的經(jīng)驗,提高分類考慮、討論問題的能力,感知方程與不等式的內(nèi)在聯(lián)系,體會不等式和方程同樣都是刻畫現(xiàn)實世界數(shù)量關(guān)系的重要模型。

  情感目標(biāo):在積極參與數(shù)學(xué)學(xué)習(xí)活動的過程中,形成實事求是的態(tài)度和獨立思考的習(xí)慣;學(xué)會在解決問題時,與其他同學(xué)交流,培養(yǎng)互相合作精神。

  【重點難點】

  重點:一元一次不等式在實際問題中的應(yīng)用。

  難點:在實際問題中建立一元一次不等式的數(shù)量關(guān)系。

  關(guān)鍵:突出建模思想,刻畫出數(shù)量關(guān)系,從實際中抽象出數(shù)量關(guān)系。注意問題中隱含的不等量關(guān)系,列代數(shù)式得到不等式,轉(zhuǎn)化為純數(shù)學(xué)問題求解。

  【教學(xué)過程】

  創(chuàng)設(shè)情境,研究新知

  老師知道,咱們班的學(xué)生特別聰明、特別棒,不等式這一章學(xué)習(xí)的特別好,下面讓我來檢測一下,看看那些同學(xué)學(xué)習(xí)的好?

  (出示一個解不等式的問題,為后面新知作鋪墊)

【《一元一次不等式》七年級數(shù)學(xué)下冊第1課時教學(xué)設(shè)計】相關(guān)文章:

一元一次不等式教學(xué)設(shè)計04-08

七年級歷史下冊第1課《隋朝的統(tǒng)一與滅亡》教學(xué)設(shè)計評說03-03

《喜愛音樂的白鯨》第2課時教學(xué)設(shè)計12-13

難忘的潑水節(jié)第2課時教學(xué)設(shè)計12-14

七年級數(shù)學(xué)下冊教學(xué)設(shè)計12-15

七年級下冊數(shù)學(xué)教學(xué)設(shè)計05-02

《老師領(lǐng)進門》第2課時教學(xué)設(shè)計12-17

七年級歷史下冊第16課《明朝的科技、建筑與文學(xué)》教學(xué)設(shè)計03-01

七年級歷史下冊第9課《宋代經(jīng)濟的發(fā)展》教學(xué)設(shè)計評說03-04