国语精品91自产拍在线观看二区_色偷偷五月天_天天射夜夜爽_99久久免费国产特黄_1717国产精品久久

運營數(shù)據(jù)分析方法

時間:2022-06-23 04:41:31 科普知識 我要投稿
  • 相關(guān)推薦

運營數(shù)據(jù)分析方法

  我們以往的咨詢規(guī)劃中,數(shù)據(jù)的收集、診斷與分析往往是一項復(fù)雜且費時費力的工作。為大家提供了關(guān)于運營數(shù)據(jù)的分析方法,希望對大家有幫助!

  方法1:Link Tag 的流量標記

  Link tag 標記流量源頭 ,絕對是所有方法中最為基本重要的一種。這種方法不僅僅適用于網(wǎng)站的流量來源,也同樣適用于 app 下載來源的監(jiān)測(但后者需要滿足一定的條件)。

  Link tag 的意思,是在流量源頭的鏈出鏈接上(鏈出 URL 上)加上尾部參數(shù)。這些參數(shù)不僅不會影響鏈接的跳轉(zhuǎn),而且能夠標明這個鏈接所屬的流量源是什么(理論上能夠標明流量源的屬性數(shù)是無限的)。

  Link tag 不能單獨起作用,必須要在網(wǎng)站分析工具或者 app 分析工具的配合下工作。

  Link tag 是流量分析的基礎(chǔ),要嚴肅地分析流量,不僅僅是常規(guī)分析,還包括歸因分析(attribution analysis),都需要使用 link tag 的方法。

  方法2:轉(zhuǎn)化漏斗

  分析轉(zhuǎn)化的基本模型是轉(zhuǎn)化漏斗(conversion funnel),這個大家都應(yīng)該很熟悉了。

  轉(zhuǎn)化漏斗最常見的是把最終的轉(zhuǎn)化設(shè)置為某種目的的實現(xiàn),最典型的就是實現(xiàn)銷售,所以大家很多時候把轉(zhuǎn)化和銷售是混為一談。但轉(zhuǎn)化漏斗的最終轉(zhuǎn)化也可以是其他任何目的的實現(xiàn),比如一次使用 app 的時間超過 10 分鐘(session duration >10minutes)。對于增長黑客而言,構(gòu)建漏斗是最為常見的工作。

  漏斗幫助我們解決兩方面的問題,第一、在一個過程中是否發(fā)生泄漏,如果有泄漏,我們能在漏斗中看到,并且能夠通過進一步的分析堵住這個泄漏點;第二、在一個過程中是否出現(xiàn)了其他不應(yīng)該出現(xiàn)的過程,造成轉(zhuǎn)化主進程受到損害。

  漏斗的構(gòu)建很簡單,無論 web 還是 app,都是最好用的方法之一。但漏斗使用的奧秘則很豐富。而且漏斗方法還會和其他方法混合使用,樂趣無窮。我在互聯(lián)網(wǎng)數(shù)據(jù)運營的課程中也會具體講解。

  方法3:微轉(zhuǎn)化

  人人都懂轉(zhuǎn)化漏斗,但不是所有人都關(guān)注微轉(zhuǎn)化。但是你想指望一個轉(zhuǎn)化漏斗不斷提升轉(zhuǎn)化率太困難了,而微轉(zhuǎn)化卻可以做到。轉(zhuǎn)化漏斗解決的是轉(zhuǎn)化過程中的大問題,但大問題總是有限的,這些問題搞定后,你還是需要對你的轉(zhuǎn)化進行持續(xù)優(yōu)化,這個時候必須要用到微轉(zhuǎn)化。

  微轉(zhuǎn)化是指在轉(zhuǎn)化必經(jīng)過程之外,但同樣會對轉(zhuǎn)化產(chǎn)生影響的各種元素。這些元素與用戶的互動,左右了用戶的感受,也直接或者間接的影響了用戶的決定。

  比如,商品的一些圖片展示,并不是轉(zhuǎn)化過程中必須要看的,但是它們的存在,是否會對用戶的購買決定產(chǎn)生影響?這些圖片就是微轉(zhuǎn)化元素。

  個人認為,研究微轉(zhuǎn)化比研究轉(zhuǎn)化更好玩。有一些案例,課堂上跟大家講。

  方法4:合并同類項

  合并同類項是大家容易忽視的常用方法。我們往往非常重視細分,但有的時候我們卻需要了解更宏觀的表現(xiàn)。

  合并同類項就是這樣的方法。舉一個例子,我問你,一個電子商務(wù)網(wǎng)站,所有商品頁的整體表現(xiàn)如何?它們作為一個整體的 bounce rate 怎么樣,停留時間怎么樣,用戶滿意度怎么樣等等,你能夠回答嗎?

  如果我們查看每一個商品頁的表現(xiàn),然后再把所有一個一個頁面的數(shù)據(jù)加總起來作分析,就太麻煩了(根本無法實現(xiàn)分析)。這個時候,我們必須要合并同類項。

  如何合并?利用分析工具的過濾工具或者查找替換功能。不支持這樣功能的工具你可以考慮扔掉了,因為這根本不應(yīng)放在增長黑客的專業(yè)裝備箱中。

  合并同類項還有很多用途,比如你要了解 web 或者 app 一個版塊(頻道)的整體表現(xiàn),或者你要了解整個導(dǎo)航體系的使用情況,這都是必須使用的方法。

  方法5:AB 測試

  增長黑客不談 AB 測試是恥辱。

  通過數(shù)據(jù)優(yōu)化運營和產(chǎn)品的邏輯很簡單——看到問題,想個主意,做出原型,測試定型。

  比如,你發(fā)現(xiàn)轉(zhuǎn)化漏斗中間有一個漏洞,于是你想,一定是商品價格不對頭,讓大家不想買了。你看到了問題——漏斗,而且你也想出了主意——改變定價。

  但是這個主意靠不靠譜,可不是你想出來的,必須得讓真實的用戶用。于是你用 AB 測試,一部分的用戶還是看到老價格,另外一部分用戶看到新價格。若是你的主意真的管用,新價格就應(yīng)該有更好的轉(zhuǎn)化。若真如此,新的價格就被確定下來(定型),開始在新的轉(zhuǎn)化高度上運行,直到你又發(fā)現(xiàn)一個新的需要改進的問題。

  增長黑客的一個主要思想之一,是不要做一個大而全的東西,而是不斷做出能夠快速驗證的小而精的東西?焖衮炞C,如何驗證的?主要方法就是 AB 測試。

  今天的互聯(lián)網(wǎng)世界,由于流量紅利時代的結(jié)束,對于快速迭代的要求大大提升了,這也使我們更加在意測試的力量。

  在 web 上進行 AB 測試很簡單,在 app 上難度要高很多,但解決方法還是很多的。國外那些經(jīng)典 app,那些賣錢游戲,幾乎天天都在 AB 測試。

  方法6:熱圖及對比熱圖

  熱圖是一個大家都喜歡的功能,它是最直觀的記錄用戶與產(chǎn)品界面交互的工具。不過真用起來,可能大家很少真正去深究吧!

  熱圖,對于 web、app 的分析,都非常重要!今天的熱圖相對于過去的熱圖,功能得到了極大的提升。

  在 web 端,過去一些解決不好的問題,比如只能看鏈接的被點擊情況,點擊位置錯位,對浮層部分點擊的標記,對鏈出鏈接的標記等等,現(xiàn)在已經(jīng)有好的工具能夠提供很多新的辦法去解決。在 app 端則分為兩種情況,內(nèi)容類的 app,對于熱圖的需求較弱;但工具類的 app 對于熱圖的需求則很顯著。前者的 screen 中以并列內(nèi)容為主,且內(nèi)容動態(tài)變換,熱圖應(yīng)用價值不高;后者則特別需要通過熱圖反映用戶的使用習(xí)慣,并結(jié)合 app 內(nèi)其他的 engagement 的分析(in-app engagement)來優(yōu)化功能和布局設(shè)計,所以熱圖對它們很重要。

  要想熱圖用得好,一個很重要的點在于你幾乎不能單獨使用一個熱圖就想解決問題。我常常用集中對比熱圖的方法。

  其一,多種熱圖的對比分析,尤其是點擊熱圖(觸摸熱圖)、閱讀線熱圖、停屏熱圖的對比分析;

  其二,細分人群的熱圖對比分析,例如不同渠道、新老用戶、不同時段、AB 測試的熱圖對比等等。

  其三,深度不同的互動,所反映的熱圖也是不同的。這種情況也值得利用熱圖對比功能。例如點擊熱圖與轉(zhuǎn)化熱圖的對比分析等。

  總之,分析很多用戶交互的時候,熱圖簡直是神器,只不過,熱圖真的比你看到的要更強大!

  方法7:Event Tracking(事件追蹤)

  互聯(lián)網(wǎng)運營數(shù)據(jù)分析的一個很重要的基礎(chǔ)是網(wǎng)站分析。今天的 app 分析、流量分析、渠道分析,還有后面要講到的歸因分析等等,都是在網(wǎng)站分析的基礎(chǔ)之上發(fā)展起來的。

  但是,早期的網(wǎng)站分析有一個特點,就是對于用戶在頁面上互動行為的記錄,只能記錄下來一種,就是點擊 http 鏈接(點擊 URL)。不過隨著技術(shù)的發(fā)展,頁面上不僅僅只有 http 鏈接,頁面上還有很多 flash(現(xiàn)在 flash 都要被淘汰了)、JavaScript 的互動鏈接、視頻播放、鏈接到其他的 web 或者 app 的鏈接等等,用戶點擊這些東西就都無法被老方法記錄下來了。

  不過,有問題就一定有方法,人們發(fā)明了 event tracking 來解決上面的問題。event tracking 本質(zhì)上是對這些特殊互動的定制化監(jiān)測,而由于是定制化,所以反而有了更多附加的好處,即可以額外添加對于這個活動的更多的說明(以 event tracking 這個方法的附件屬性的方式)。結(jié)果,這個方法甚至有些反客為主,即使是一些 http 鏈接,很多分析老手也喜歡把它們加上 event tracking(技術(shù)上完全可行),以獲得更多的額外監(jiān)測屬性說明。

  隨著 app 的出現(xiàn),由于 app 的特殊性(屏幕小,更強調(diào)在一個屏幕中完成互動),分析 app 的 page(實際上應(yīng)該是 app 的 screen)間跳轉(zhuǎn)的重要性完全不如 web 上的 page 之間的跳轉(zhuǎn),但分析 app 上的點擊行為的重要性則十分巨大,這就使我們分析 in-app engagement 的時候,必須大量依賴 event,而相對較少使用 screen。這就是說,在 app 端,event 反而是主,page(更準確應(yīng)該是 screen)反而是輔!

  這也是為什么,這個方法你必須要掌握的原因。

  方法8:Cohort 分析

  Cohort 分析還沒有一個所有人都統(tǒng)一使用的翻譯。有的說是隊列分析,有的說是世代分析,有的說是隊列時間序列分析。大家可以參考維基百科:隊列研究,找找自己覺得合適的譯名。

  無論哪種叫法,Cohort 分析在有數(shù)據(jù)運營領(lǐng)域都變得十分重要。原因在于,隨著流量經(jīng)濟的退卻,精耕細作的互聯(lián)網(wǎng)運營特別需要仔細洞察留存情況。Cohort 分析最大的價值也正在于此。Cohort 分析通過對性質(zhì)完全一樣的可對比群體的留存情況的比較,來發(fā)現(xiàn)哪些因素影響短、中、長期的留存。

  Cohort 分析受到歡迎的另一個原因是它用起來十分簡單,但卻十分直觀。相較于比較繁瑣的流失(churn)分析,RFM 或者用戶聚類等,Cohort 只用簡單的一個圖表,甚至連四則運算都不用,就直接描述了用戶在一段時間周期(甚至是整個 LTV)的留存(或流失)變化情況。甚至,Cohort 還能幫你做預(yù)測。

  我總覺得 Cohort 分析是最能體現(xiàn)簡單即美的一個典型方法。

  方法9:Attribution(歸因)

  歸因不是人人都聽說過,用好的更是寥寥無幾。 不過,考慮到人們購買某一樣?xùn)|西的決策,可能受到多種因素(數(shù)字營銷媒體)的影響,比如看到廣告了解到這個商品的存在,利用搜索,進一步了解這個商品,然后在 social 渠道上看到這個商品的公眾號等等。這些因素的綜合,讓一個人下定了決心購買。

  因此,很多時候,單一的廣告渠道并不是你打開客戶閘門的閥門,而是多種渠道共同作用的結(jié)果。

  如何了解數(shù)字營銷渠道之間的這種先后關(guān)系或者相互作用?如何設(shè)置合理的數(shù)字營銷渠道的策略以促進這種關(guān)系?在評價一個渠道的時候,如何將歸因考慮在內(nèi)從而能夠更客觀的衡量?這些都需要用到歸因。

  如果你是互聯(lián)網(wǎng)營銷的負責(zé)人,歸因分析是必不可少的分析方法。在我的課堂上,會特別多的篇幅講解這個方法。

  方法10:細分

  嚴格說,細分不是一種方法,它是一切分析的本源。所以它當(dāng)之無愧要排名第一。

  我經(jīng)常的口頭禪是,無細分、毋寧死。沒有細分你做什么分析呀。

  細分有兩類,一類是一定條件下的區(qū)隔。如:在頁面中停留 30 秒以上的 visit(session);或者只要北京地區(qū)的訪客等。其實就是過濾。另一類是維度(dimension)之間的交叉。如:北京地區(qū)的新訪問者。即分群(segmentation)。

  細分幾乎幫助我們解決所有問題。比如,我們前面講的構(gòu)建轉(zhuǎn)化漏斗,實際上就是把轉(zhuǎn)化過程按照步驟進行細分。流量渠道的分析和評估也需要大量用到細分的方法。

  維度之間的交叉是比較體現(xiàn)一個人分析水平的細分方法。比如,我的朋友他將用戶的反饋作為 event tracking 的屬性(放在了 event action 屬性中),提交給 GA,然后在自定義的報告中,將用戶反饋和用戶的其他行為交叉起來,從而看到有某一類反饋的用戶,他們的行為軌跡是什么,從而推測發(fā)生了什么問題。

  分析跳出率時,我們也會把 landing page 和它的 traffic source(流量源)進行交叉,以檢查高跳出率的表現(xiàn)是由著陸頁造成,還是由流量造成。這也是典型的維度交叉細分的應(yīng)用。

  無細分,毋寧死。