国语精品91自产拍在线观看二区_色偷偷五月天_天天射夜夜爽_99久久免费国产特黄_1717国产精品久久

必修一數(shù)學(xué)總結(jié)

時(shí)間:2024-09-04 17:06:37 總結(jié)范文 我要投稿

必修一數(shù)學(xué)總結(jié)

  總結(jié)是對某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況進(jìn)行分析研究的書面材料,它可以促使我們思考,因此我們要做好歸納,寫好總結(jié)。你想知道總結(jié)怎么寫嗎?下面是小編為大家收集的必修一數(shù)學(xué)總結(jié),歡迎閱讀與收藏。

必修一數(shù)學(xué)總結(jié)

必修一數(shù)學(xué)總結(jié)1

  函數(shù)的有關(guān)概念

  函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈

  (1)其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;

  (2)與x的值相對應(yīng)的.y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.

  函數(shù)的三要素:定義域、值域、對應(yīng)法則

  函數(shù)的表示方法:(1)解析法:明確函數(shù)的定義域

  (2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點(diǎn)等等。

  (3)列表法:選取的自變量要有代表性,可以反應(yīng)定義域的特征。

  4、函數(shù)圖象知識歸納

  (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x) , (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.

  (2)畫法

  A、描點(diǎn)法:B、圖象變換法:平移變換;伸縮變換;對稱變換。

  (3)函數(shù)圖像變換的特點(diǎn):

  1)函數(shù)y=f(x)關(guān)于X軸對稱y=-f(x)

  2)函數(shù)y=f(x)關(guān)于Y軸對稱y=f(-x)

  3)函數(shù)y=f(x)關(guān)于原點(diǎn)對稱y=-f(-x)

必修一數(shù)學(xué)總結(jié)2

  知識點(diǎn)總結(jié)

  本節(jié)知識包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性和函數(shù)的圖象等知識點(diǎn)。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個(gè)知識點(diǎn),函數(shù)的圖象就迎刃而解了。

  一、函數(shù)的單調(diào)性

  1、函數(shù)單調(diào)性的定義

  2、函數(shù)單調(diào)性的判斷和證明:(1)定義法 (2)復(fù)合函數(shù)分析法 (3)導(dǎo)數(shù)證明法 (4)圖象法

  二、函數(shù)的奇偶性和周期性

  1、函數(shù)的奇偶性和周期性的定義

  2、函數(shù)的奇偶性的判定和證明方法

  3、函數(shù)的周期性的判定方法

  三、函數(shù)的圖象

  1、函數(shù)圖象的作法 (1)描點(diǎn)法 (2)圖象變換法

  2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。

  常見考法

  本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的'每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。

  誤區(qū)提醒

  1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。

  2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點(diǎn)問題。

  3、在多個(gè)單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號隔開。

  4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點(diǎn)對稱,則函數(shù)一定是非奇非偶函數(shù)。

  5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點(diǎn)法或圖象變換法作函數(shù)的圖象。

必修一數(shù)學(xué)總結(jié)3

  基本初等函數(shù)有哪些

  基本初等函數(shù)包括以下幾種:

  (1)常數(shù)函數(shù)y = c( c為常數(shù))

  (2)冪函數(shù)y = x^a( a為常數(shù))

  (3)指數(shù)函數(shù)y = a^x(a>0, a≠1)

  (4)對數(shù)函數(shù)y =log(a) x(a>0, a≠1,真數(shù)x>0)

  (5)三角函數(shù)以及反三角函數(shù)(如正弦函數(shù):y =sinx反正弦函數(shù):y = arcsin x等)

  基本初等函數(shù)性質(zhì)是什么

  冪函數(shù)

  形如y=x^a的函數(shù),式中a為實(shí)常數(shù)。

  指數(shù)函數(shù)

  形如y=a^x的函數(shù),式中a為不等于1的正常數(shù)。

  對數(shù)函數(shù)

  指數(shù)函數(shù)的反函數(shù),記作y=loga a x,式中a為不等于1的正常數(shù)。指數(shù)函數(shù)與對數(shù)函數(shù)之間成立關(guān)系式,loga ax=x。

  三角函數(shù)

  即正弦函數(shù)y=sinx,余弦函數(shù)y=cosx,正切函數(shù)y=tanx,余切函數(shù)y=cotx,正割函數(shù)y=secx,余割函數(shù)y=cscx(見三角學(xué))。

  反三角函數(shù)

  三角函數(shù)的反函數(shù)——反正弦函數(shù)y = arc sinx,反余弦函數(shù)y=arc cosx (-1≤x≤1,初等函數(shù)0≤y≤π),反正切函數(shù)y=arc tanx,反余切函數(shù)y = arc cotx(-∞

  學(xué)習(xí)數(shù)學(xué)小竅門

  建立數(shù)學(xué)糾錯(cuò)本。

  把平時(shí)容易出現(xiàn)錯(cuò)誤的知識或推理記載下來,以防再犯。爭取做到:找錯(cuò)、析錯(cuò)、改錯(cuò)、防錯(cuò)。達(dá)到:能從反面入手深入理解正確東西;能由果朔因把錯(cuò)誤原因弄個(gè)水落石出、以便對癥下藥;解答問題完整、推理嚴(yán)密。

  限時(shí)訓(xùn)練。

  可以找一組題(比如10道選擇題),爭取限定一個(gè)時(shí)間完成;也可以找1道大題,限時(shí)完成。這主要是創(chuàng)設(shè)一種考試情境,檢驗(yàn)自己在緊張狀態(tài)下的思維水平。

  調(diào)整心態(tài),正確對待考試。

  首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。

  數(shù)學(xué)函數(shù)的值域與最值知識點(diǎn)

  1、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:

  (1)直接法:亦稱觀察法,對于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.

  (2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元.

  (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.

  (4)配方法:對于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法.

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧.

  (6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.

  (7)利用函數(shù)的`單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.

  (8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.

  2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系

  求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異.

  如函數(shù)的值域是(0,16],最大值是16,無最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無最大值和最小值,只有在改變函數(shù)定義域后,如x>0時(shí),函數(shù)的最小值為2.可見定義域?qū)瘮?shù)的值域或最值的影響.

  3、函數(shù)的最值在實(shí)際問題中的應(yīng)用

  函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識求解實(shí)際問題上,從文字表述上常常表現(xiàn)為“工程造價(jià)最低”,“利潤最大”或“面積(體積)最大(最小)”等諸多現(xiàn)實(shí)問題上,求解時(shí)要特別關(guān)注實(shí)際意義對自變量的制約,以便能正確求得最值.

必修一數(shù)學(xué)總結(jié)4

  一、集合及其表示

  1、集合的含義:

  “集合”這個(gè)詞首先讓我們想到的是上體育課或者開會(huì)時(shí)老師經(jīng)常喊的“全體集合”。數(shù)學(xué)上的“集合”和這個(gè)意思是一樣的,只不過一個(gè)是動(dòng)詞一個(gè)是名詞而已。

  所以集合的含義是:某些指定的對象集在一起就成為一個(gè)集合,簡稱集,其中每一個(gè)對象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構(gòu)成了一個(gè)集合,每一個(gè)同學(xué)就稱為這個(gè)集合的元素。

  2、集合的表示

  通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。

  有一些特殊的集合需要記憶:

  非負(fù)整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+

  整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

  集合的表示方法:列舉法與描述法。

 、倭信e法:{a,b,c……}

  ②描述法:將集合中的元素的公共屬性描述出來。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

 、壅Z言描述法:例:{不是直角三角形的三角形}

  例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

  強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素

  A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。

  3、集合的三個(gè)特性

 。1)無序性

  指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。

  例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

  解:,A=B

  注意:該題有兩組解。

 。2)互異性

  指集合中的元素不能重復(fù),A={2,2}只能表示為{2}

 。3)確定性

  集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的。情況。

  集合的含義

  集合的中元素的三個(gè)特性:

  元素的確定性如:世界上的山

  元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

  元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

  3、集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

  用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  集合的表示方法:列舉法與描述法。

  注意:常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集NxN+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

  列舉法:{a,b,c……}

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x(R|x—3>2},{x|x—3>2}

  語言描述法:例:{不是直角三角形的三角形}

  Venn圖:

  4、集合的分類:

  有限集含有有限個(gè)元素的集合

  無限集含有無限個(gè)元素的集合

  空集不含任何元素的集合例:{x|x2=—5}

  對數(shù)函數(shù)

  對數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。

  右圖給出對于不同大小a所表示的函數(shù)圖形:

  可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。

 。1)對數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。

  (2)對數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。

 。3)函數(shù)總是通過(1,0)這點(diǎn)。

  (4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。

  (5)顯然對數(shù)函數(shù)。

  1、函數(shù)零點(diǎn)的定義

 。1)對于函數(shù))(xfy,我們把方程0)(xf的實(shí)數(shù)根叫做函數(shù))(xfy)的零點(diǎn)。

 。2)方程0)(xf有實(shí)根函數(shù)(yfx)的圖像與x軸有交點(diǎn)函數(shù)(yfx)有零點(diǎn)。因此判斷一個(gè)函數(shù)是否有零點(diǎn),有幾個(gè)零點(diǎn),就是判斷方程0)(xf是否有實(shí)數(shù)根,有幾個(gè)實(shí)數(shù)根。函數(shù)零點(diǎn)的求法:解方程0)(xf,所得實(shí)數(shù)根就是(fx)的零點(diǎn)(3)變號零點(diǎn)與不變號零點(diǎn)

 、偃艉瘮(shù)(fx)在零點(diǎn)0x左右兩側(cè)的函數(shù)值異號,則稱該零點(diǎn)為函數(shù)(fx)的變號零點(diǎn)。②若函數(shù)(fx)在零點(diǎn)0x左右兩側(cè)的函數(shù)值同號,則稱該零點(diǎn)為函數(shù)(fx)的不變號零點(diǎn)。

 、廴艉瘮(shù)(fx)在區(qū)間,ab上的圖像是一條連續(xù)的曲線,則0

  2、函數(shù)零點(diǎn)的判定

  (1)零點(diǎn)存在性定理:如果函數(shù))(xfy在區(qū)間],[ba上的圖象是連續(xù)不斷的曲線,并且有(fa)(fb),那么,函數(shù)(xfy)在區(qū)間,ab內(nèi)有零點(diǎn),即存在,(0bax,使得0)(0xf,這個(gè)0x也就是方程0)(xf的根。

 。2)函數(shù))(xfy零點(diǎn)個(gè)數(shù)(或方程0)(xf實(shí)數(shù)根的個(gè)數(shù))確定方法

 、俅鷶(shù)法:函數(shù))(xfy的零點(diǎn)0)(xf的根;②(幾何法)對于不能用求根公式的方程,可以將它與函數(shù))(xfy的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn)。

  (3)零點(diǎn)個(gè)數(shù)確定

  0)(xfy有2個(gè)零點(diǎn)0)(xf有兩個(gè)不等實(shí)根;0)(xfy有1個(gè)零點(diǎn)0)(xf有兩個(gè)相等實(shí)根;0)(xfy無零點(diǎn)0)(xf無實(shí)根;對于二次函數(shù)在區(qū)間,ab上的零點(diǎn)個(gè)數(shù),要結(jié)合圖像進(jìn)行確定。

  3、二分法

  (1)二分法的定義:對于在區(qū)間[,]ab上連續(xù)不斷且(fa)(fb)的函數(shù)(yfx),通過不斷地把函數(shù)(yfx)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)的近似值的方法叫做二分法;

  (2)用二分法求方程的近似解的步驟:

 、俅_定區(qū)間[,]ab,驗(yàn)證(fa)(fb)給定精確度e;

 、谇髤^(qū)間(,)ab的中點(diǎn)c;③計(jì)算(fc);

  (ⅰ)若(fc),則c就是函數(shù)的零點(diǎn);

 。á)若(fa)(fc),則令bc(此時(shí)零點(diǎn)0(,)xac);(ⅲ)若(fc)(fb),則令ac(此時(shí)零點(diǎn)0(,)xcb);

  ④判斷是否達(dá)到精確度e,即ab,則得到零點(diǎn)近似值為a(或b);否則重復(fù)②至④步。

  集合間的基本關(guān)系

  1、子集,A包含于B,記為:,有兩種可能

  (1)A是B的一部分,

  (2)A與B是同一集合,A=B,A、B兩集合中元素都相同。

  反之:集合A不包含于集合B,記作。

  如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個(gè)集合的關(guān)系可以表示為,,B=C。A是C的子集,同時(shí)A也是C的真子集。

  2、真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

  3、不含任何元素的.集合叫做空集,記為Φ。Φ是任何集合的子集。

  4、有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-2個(gè)非空真子集。如A={1,2,3,4,5},則集合A有25=32個(gè)子集,25-1=31個(gè)真子集,25-2=30個(gè)非空真子集。

  例:集合共有個(gè)子集。(13年高考第4題,簡單)

  練習(xí):A={1,2,3},B={1,2,3,4},請問A集合有多少個(gè)子集,并寫出子集,B集合有多少個(gè)非空真子集,并將其寫出來。

  解析:

  集合A有3個(gè)元素,所以有23=8個(gè)子集。分別為:①不含任何元素的子集Φ;②含有1個(gè)元素的子集{1}{2}{3};③含有兩個(gè)元素的子集{1,2}{1,3}{2,3};④含有三個(gè)元素的子集{1,2,3}。

  集合B有4個(gè)元素,所以有24-2=14個(gè)非空真子集。具體的子集自己寫出來。

  此處這么羅嗦主要是為了讓同學(xué)們注意寫的順序,數(shù)學(xué)就是要講究嚴(yán)謹(jǐn)性和邏輯性的。一定要養(yǎng)成自己的邏輯習(xí)慣。如果就是為了提高計(jì)算能力倒不如直接去菜場賣菜算了,絕對能飛速提高的,那學(xué)數(shù)學(xué)也沒什么必要了。

  一、函數(shù)模型及其應(yīng)用

  本節(jié)主要包括函數(shù)的模型、函數(shù)的應(yīng)用等知識點(diǎn)。主要是理解函數(shù)解應(yīng)用題的一般步驟靈活利用函數(shù)解答實(shí)際應(yīng)用題。

  1、常見的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對數(shù)函數(shù)模型、分段函數(shù)模型等。

  2、用函數(shù)解應(yīng)用題的基本步驟是:

  (1)閱讀并且理解題意。(關(guān)鍵是數(shù)據(jù)、字母的實(shí)際意義);

  (2)設(shè)量建模;

  (3)求解函數(shù)模型;

  (4)簡要回答實(shí)際問題。

  常見考法:

  本節(jié)知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數(shù)和較復(fù)雜的函數(shù)的最值等問題,屬于拔高題,難度較大。

  誤區(qū)提醒:

  1、求解應(yīng)用性問題時(shí),不僅要考慮函數(shù)本身的定義域,還要結(jié)合實(shí)際問題理解自變量的取值范圍。

  2、求解應(yīng)用性問題時(shí),首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,建立相應(yīng)的數(shù)學(xué)模型。

  【典型例題】

  例1:

 。1)某種儲(chǔ)蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數(shù)x之間的函數(shù)關(guān)系式,并計(jì)算5個(gè)月后的本息和(不計(jì)復(fù)利)。

 。2)按復(fù)利計(jì)算利息的一種儲(chǔ)蓄,本金為a元,每期利率為r,設(shè)本利和為y,存期為x,寫出本利和y隨存期x變化的函數(shù)式。如果存入本金1000元,每期利率2。25%,試計(jì)算5期后的本利和是多少?解:(1)利息=本金×月利率×月數(shù)。y=100+100×0。36%·x=100+0。36x,當(dāng)x=5時(shí),y=101。8,∴5個(gè)月后的本息和為101。8元。

  例2:

  某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬元)

 。1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式。

 。2)該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能是企業(yè)獲得利潤,其利潤約為多少萬元。(精確到1萬元)。

  集合

  集合具有某種特定性質(zhì)的事物的總體。這里的“事物”可以是人,物品,也可以是數(shù)學(xué)元素。例如:

  1、分散的人或事物聚集到一起;使聚集:緊急~。

  2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。

  3、口號等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門研究集合的理論叫做集合論?低(Cantor,G.F.P.,1845年—1918年,德國數(shù)學(xué)家先驅(qū),是集合論的,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。

  集合,在數(shù)學(xué)上是一個(gè)基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。集合

  集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對象匯合在一起,使之成為一個(gè)整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。

  元素與集合的關(guān)系

  元素與集合的關(guān)系有“屬于”與“不屬于”兩種。

  集合與集合之間的關(guān)系

  某些指定的對象集在一起就成為一個(gè)集合集合符號,含有有限個(gè)元素叫有限集,含有無限個(gè)元素叫無限集,空集是不含任何元素的集,記做Φ?占侨魏渭系淖蛹,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性!赫f明一下:如果集合A的所有元素同時(shí)都是集合B的元素,則A稱作是B的子集,寫作A?B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作A?B。中學(xué)教材課本里將?符號下加了一個(gè)≠符號(如右圖),不要混淆,考試時(shí)還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集!

  集合的幾種運(yùn)算法則

  并集:以屬于A或?qū)儆贐的元素為元素的集合稱為A與B的并(集),記作A∪B(或B∪A),讀作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以屬于A且屬于B的元差集表示

  素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因?yàn)锳和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個(gè)中含有1,2,3,5這些個(gè)元素,不管多少,反正不是你有,就是我有。那么說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍數(shù)的數(shù)有多少個(gè)。結(jié)果是3,5,7每項(xiàng)減集合

  1再相乘。48個(gè)。對稱差集:設(shè)A,B為集合,A與B的對稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱差運(yùn)算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個(gè)元素的集合叫做無限集有限集:令N_是正整數(shù)的全體,且N_n={1,2,3,……,n},如果存在一個(gè)正整數(shù)n,使得集合A與N_n一一對應(yīng),那么A叫做有限集合。差:以屬于A而不屬于B的元素為元素的集合稱為A與B的差(集)。記作:AB={x│x∈A,x不屬于B}。注:空集包含于任何集合,但不能說“空集屬于任何集合”。補(bǔ)集:是從差集中引出的概念,指屬于全集U不屬于集合A的元素組成的集合稱為集合A的補(bǔ)集,記作CuA,即CuA={x|x∈U,且x不屬于A}空集也被認(rèn)為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中沒有的3,4就是CuA,是A的補(bǔ)集。CuA={3,4}。在信息技術(shù)當(dāng)中,常常把CuA寫成~A。

  集合元素的性質(zhì)

  1.確定性:每一個(gè)對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如“個(gè)子高的同學(xué)”“很小的數(shù)”都不能構(gòu)成集合。這個(gè)性質(zhì)主要用于判斷一個(gè)集合是否能形成集合。

  2.獨(dú)立性:集合中的元素的個(gè)數(shù)、集合本身的個(gè)數(shù)必須為自然數(shù)。

  3.互異性:集合中任意兩個(gè)元素都是不同的對象。如寫成{1,1,2},等同于{1,2}。互異性使集合中的元素是沒有重復(fù),兩個(gè)相同的對象在同一個(gè)集合中時(shí),只能算作這個(gè)集合的一個(gè)元素。

  4.無序性:{a,b,c}{c,b,a}是同一個(gè)集合。

  5.純粹性:所謂集合的純粹性,用個(gè)例子來表示。集合A={x|x

必修一數(shù)學(xué)總結(jié)5

  1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對稱軸如下表:

  解析式

  頂點(diǎn)坐標(biāo)

  對稱軸

  y=ax^2

  (0,0)

  x=0

  y=a(x-h)^2

  (h,0)

  x=h

  y=a(x-h)^2+k

  (h,k)

  x=h

  y=ax^2+bx+c

  (-b/2a,[4ac-b^2]/4a)

  x=-b/2a

  當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,

  當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

  當(dāng)h>0,k>0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h>0,k<0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

  2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

  3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小.

  4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

  (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

  (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?|

  當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);

  當(dāng)△<0.圖象與x軸沒有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.

  5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.

  頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.

  6.用待定系數(shù)法求二次函數(shù)的.解析式

  (1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對對應(yīng)值時(shí),可設(shè)解析式為一般形式:

  y=ax^2+bx+c(a≠0).

  (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).

  (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

  7.二次函數(shù)知識很容易與其它知識綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).

必修一數(shù)學(xué)總結(jié)6

  一集合

  1、集合的含義:集合為一些確定的、不同的對象的全體。2、集合的中元素的三個(gè)特性:確定性、互異性、無序性。3、集合的表示:

  (1)用大寫字母表示集合:A,B…(2)集合的表示方法:

  a、列舉法:將集合中的元素一一列舉出來{a,b,c}b、描述法:集合中元素的公共屬性描述出來,寫在大括號內(nèi)表示集合,xRx23c、維恩圖:用一條封閉曲線的內(nèi)部表示.

  4、集合的分類:

  (1)有限集:含有有限個(gè)元素的集合(2)無限集:含有無限個(gè)元素的集合(3)空集:不含任何元素的集合5、元素與集合的關(guān)系:aA;aA注意:常用數(shù)集及其記法:

  非負(fù)整數(shù)集:(即自然數(shù)集)N正整數(shù)集:Nx或N+整數(shù)集:Z有理數(shù)集:Q實(shí)數(shù)集:R

  6、集合間的基本關(guān)系(1)“包含”關(guān)系子集

  定義:如果集合A的任何一個(gè)元素都是集合B的元素,我們說這兩個(gè)集合有包含

  關(guān)系,稱集合A是集合B的子集。記作:AB(或BA)

  注意:AB有兩種可能(1)A是B的一部分;

 。2)A與B是同一集合。

  B或BA反之:集合A不包含于集合B,或集合B不包含集合A,記作A(2)“包含”關(guān)系真子集

  如果集合AB,但存在元素xB且xA,則集合A是集合B的真子集,記作AB(或BA)

 。3“相等”關(guān)系:A=B“元素相同則兩集合相等”,如果AB同時(shí)BA那么A=B

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。(4)集合的性質(zhì)

  ①任何一個(gè)集合是它本身的子集,AA②如果AB,BC,那么AC③如果AB且BC,那么AC

 、苡衝個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

  7、集合的運(yùn)算

  運(yùn)算類型交集并集定義由所有屬于A且屬于B由所有屬于集合A或?qū)俚脑厮M成的集合,于集合B的元素所組成叫做A,B的交集.記作的集合,叫做A,B的并AB(讀作‘A交B’)集.記作:AB(讀作‘A并B’)補(bǔ)集全集:一般,若一個(gè)集合含有我們所研究問題中的所有元素,我們就稱這個(gè)集合為全集,記作:U設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)記作CSA,韋恩圖示ABABSA圖1圖2CU(CUA)A性質(zhì)A∩A=AA∩Φ=ΦA(chǔ)∩B=BAAUA=AAUΦ=AAUB=BUAAU(CuA)=UA∩(CuA)=Φ.A∩BAA∩AUBABBAUBB二函數(shù)1.函數(shù)的概念:記法y=f(x),x∈A.

  2.函數(shù)的三要素:定義域、值域、對應(yīng)法則

  3.函數(shù)的表示方法:(1)解析法:(2)圖象法:(3)列表法:4.函數(shù)的基本性質(zhì)

  a、函數(shù)解析式子的求法

  (1)代入法:(2)待定系數(shù)法:(3)換元法:(4)拼湊法:

  b、定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。(1)分式的分母不等于零;

  (2)偶次方根的被開方數(shù)大于等于零;

  (3)對數(shù)式的真數(shù)必須大于零;(4)零次冪式的底數(shù)不等于零;(5)分段函數(shù)的.各段范圍取并集;

  (6)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合;

  (7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.c、相同函數(shù)的判斷方法;定義域一致②對應(yīng)法則一致

  d.區(qū)間的概念:

  e.值域(先考慮其定義域)5.分段函數(shù)6.映射的概念

  對于映射f:A→B來說,則應(yīng)滿足:

  (1)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個(gè);(3)不要求集合B中的每一個(gè)元素在集合A中都有原象。注意:函數(shù)是特殊的映射。7、函數(shù)的單調(diào)性(局部性質(zhì))(1)增減函數(shù)定義(2)圖象的特點(diǎn)

  如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的

 。3)函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法(A)定義法:○1取值;○2作差;○3變形;○4定號;○5結(jié)論.(B)圖象法(從圖象上看升降)

  (C)復(fù)合函數(shù)的單調(diào)性:“同增異減”

  注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

  8、函數(shù)的奇偶性(整體性質(zhì))(1)奇、偶函數(shù)定義

 。2)具有奇偶性的函數(shù)的圖象的特征

  偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱.(3)利用定義判斷函數(shù)奇偶性的步驟:

  a、首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對稱;若是不對稱,則是非奇非偶的函數(shù);若對稱,則進(jìn)行下面判斷;b、確定f(-x)與f(x)的關(guān)系;

  c、作出相應(yīng)結(jié)論:若f(-x)=f(x),則f(x)是偶函數(shù);

  若f(-x)=-f(x),則f(x)是奇函數(shù).

  注意:函數(shù)定義域關(guān)于原點(diǎn)對稱是函數(shù)具有奇偶性的前提條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,若不對稱則函數(shù)是非奇非偶函數(shù).(4)函數(shù)的奇偶性與單調(diào)性

  奇函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相反的單調(diào)性。(5)若已知是奇、偶函數(shù)可以直接用特值9、基本初等函數(shù)

  一、一次函數(shù)

  二、二次函數(shù):二次函數(shù)的圖象與性質(zhì),注意:二次函數(shù)值域求法三、指數(shù)函數(shù)(一)指數(shù)

  1、有理指數(shù)冪的運(yùn)算法則2、根式的概念3、分?jǐn)?shù)指數(shù)冪

  正數(shù)的分?jǐn)?shù)指數(shù)冪的

  anam(a0,m,nNx,n1),amnmn1amn1nam(a0,m,nNx,n1)

 。ǘ┲笖(shù)函數(shù)的性質(zhì)及其特點(diǎn)

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)yax(a0,且a1)叫做指數(shù)函數(shù),其中x是自變量,

  函數(shù)的定義域?yàn)镽.

  2、指數(shù)函數(shù)的圖象和性質(zhì)a>16540

  注意:換底公式

  logablogcb(a0,且a1;c0,且c1;b0).logca1nlogab;(2)logabmlogba利用換底公式推導(dǎo)下面的結(jié)論(1)logambn.

 。ㄈ⿲(shù)函數(shù)

  1、對數(shù)函數(shù)的概念:函數(shù)ylogax(a0,且a1)叫做對數(shù)函數(shù),其中x是自變量,

  函數(shù)的定義域是(0,+∞).

  2、對數(shù)函數(shù)的性質(zhì):a>10

必修一數(shù)學(xué)總結(jié)7

 。ㄒ唬、映射、函數(shù)、反函數(shù)

  1、對應(yīng)、映射、函數(shù)三個(gè)概念既有共性又有區(qū)別,映射是一種特殊的對應(yīng),而函數(shù)又是一種特殊的映射。

  2、對于函數(shù)的概念,應(yīng)注意如下幾點(diǎn):

 。1)掌握構(gòu)成函數(shù)的三要素,會(huì)判斷兩個(gè)函數(shù)是否為同一函數(shù)。

  (2)掌握三種表示法——列表法、解析法、圖象法,能根實(shí)際問題尋求變量間的函數(shù)關(guān)系式,特別是會(huì)求分段函數(shù)的解析式。

 。3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù)、

  3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:

 。1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;

  (2)由y=f(x)的解析式求出x=f—1(y);

 。3)將x,y對換,得反函數(shù)的習(xí)慣表達(dá)式y(tǒng)=f—1(x),并注明定義域、

  注意:

 、賹τ诜侄魏瘮(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起、

 、谑煜さ膽(yīng)用,求f—1(x0)的值,合理利用這個(gè)結(jié)論,可以避免求反函數(shù)的過程,從而簡化運(yùn)算、

 。ǘ、函數(shù)的解析式與定義域

  1、函數(shù)及其定義域是不可分割的整體,沒有定義域的函數(shù)是不存在的,因此,要正確地寫出函數(shù)的解析式,必須是在求出變量間的對應(yīng)法則的同時(shí),求出函數(shù)的定義域。求函數(shù)的定義域一般有三種類型:

 。1)有時(shí)一個(gè)函數(shù)來自于一個(gè)實(shí)際問題,這時(shí)自變量x有實(shí)際意義,求定義域要結(jié)合實(shí)際意義考慮;

 。2)已知一個(gè)函數(shù)的解析式求其定義域,只要使解析式有意義即可。如:

  ①分式的分母不得為零;

 、谂即畏礁谋婚_方數(shù)不小于零;

  ③對數(shù)函數(shù)的真數(shù)必須大于零;

 、苤笖(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

 、萑呛瘮(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等。

  應(yīng)注意,一個(gè)函數(shù)的解析式由幾部分組成時(shí),定義域?yàn)楦鞑糠钟幸饬x的自變量取值的`公共部分(即交集)。

 。3)已知一個(gè)函數(shù)的定義域,求另一個(gè)函數(shù)的定義域,主要考慮定義域的深刻含義即可。

  已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時(shí)f(x)的定義域,即g(x)的值域。

  2、求函數(shù)的解析式一般有四種情況

 。1)根據(jù)某實(shí)際問題需建立一種函數(shù)關(guān)系時(shí),必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識尋求函數(shù)的解析式。

 。2)有時(shí)題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法。比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可。

  (3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法求函數(shù)f(x)的表達(dá)式,這時(shí)必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域。

 。4)若已知f(x)滿足某個(gè)等式,這個(gè)等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(—x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達(dá)式。

 。ㄈ、函數(shù)的值域與最值

  1、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:

 。1)直接法:亦稱觀察法,對于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域。

 。2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元。

 。3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f—1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得。

  (4)配方法:對于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法。

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧。

  (6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域。其題型特征是解析式中含有根式或分式。

  (7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域。

 。8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域。

  2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系

  求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲。因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異。

  如函數(shù)的值域是(0,16],最大值是16,無最小值。再如函數(shù)的值域是(—∞,—2]∪[2,+∞),但此函數(shù)無最大值和最小值,只有在改變函數(shù)定義域后,如x>0時(shí),函數(shù)的最小值為2。可見定義域?qū)瘮?shù)的值域或最值的影響。

  3、函數(shù)的最值在實(shí)際問題中的應(yīng)用

  函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識求解實(shí)際問題上,從文字表述上常常表現(xiàn)為“工程造價(jià)最低”,“利潤最大”或“面積(體積)最大(最。钡戎T多現(xiàn)實(shí)問題上,求解時(shí)要特別關(guān)注實(shí)際意義對自變量的制約,以便能正確求得最值。

 。ㄋ模⒑瘮(shù)的奇偶性

  1、函數(shù)的奇偶性的定義:對于函數(shù)f(x),如果對于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù))。

  正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點(diǎn):(1)定義域在數(shù)軸上關(guān)于原點(diǎn)對稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=—f(x)或f(—x)=f(x)是定義域上的恒等式。(奇偶性是函數(shù)定義域上的整體性質(zhì))。

  2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時(shí)需要將函數(shù)化簡或應(yīng)用定義的等價(jià)形式。

必修一數(shù)學(xué)總結(jié)8

  第一章集合與函數(shù)概念

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素.

  2、集合的中元素的三個(gè)特性:

  1.元素的確定性;2.元素的互異性;3.元素的無序性

  說明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素.

  (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素.

  (3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

  (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性.

  3、集合的表示:

  { … }如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

  1.用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法.

  注意。撼S脭(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

  關(guān)于“屬于”的概念

  集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A ,相反,a不屬于集合A記作a?A

  列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號括上.

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法.用確定的條件表示某些對象是否屬于這個(gè)集合的方法.

 、僬Z言描述法:例:{不是直角三角形的三角形}

 、跀(shù)學(xué)式子描述法:例:不等式x-3>2的`解集是{x?R| x-3>2}或{x| x-3>2}

  4、集合的分類:

  1.有限集含有有限個(gè)元素的集合

  2.無限集含有無限個(gè)元素的集合

  3.空集不含任何元素的集合例:{x|x2=-5}

  高一數(shù)學(xué)必修一綜合測試真題

  第I卷(選擇題)

  1.設(shè)集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},則U(A∩B)=

  A.{1,4,5}B.{2,3}C.{4,5}D.{1,5}

  2.設(shè)集合A={x|x2﹣4x+3≥0},B={x|2x﹣3≤0},則A∪B=

  A.(﹣∞,1]∪[3,+∞)B.[1,3]C.D.

  3.若全集U={1,2,3,4,5},集合M={1,2},N={2,3,4},則(UM)∩N等于

  A.{1}B.{2}C.{3,4}D.{5}

  4.已知集合A={﹣1,2},B={x∈Z|0≤x≤2},則A∩B等于

  A.{0}B.{2}C.φD.φ

  5.設(shè)集合A={x|2x≤8},B={x|x≤m2+m+1},若A∪B=A,則實(shí)數(shù)m的取值范圍為.

  A.[﹣2,1)B.[﹣2,1]C.[﹣2,﹣1)D.[﹣1,1)

  6.已知集合A={1,2,3},B={0,1,2},則A∩B的子集個(gè)數(shù)為

  A.2B.3C.4D.16

  7.如果集合A={x|ax2﹣2x﹣1=0}只有一個(gè)元素則a的值是

  A.0B.0或1C.﹣1D.0或﹣1

  8.已知集合M={x|(x﹣1)=0},那么

  A.0∈MB.1MC.﹣1∈MD.0M

  9.設(shè)A={x|﹣1≤x<2},B={x|x<a},若A∩B≠,則a的取值范圍是

  A.a(chǎn)<2B.a(chǎn)>﹣2C.a(chǎn)>﹣1D.﹣1<a≤2

  10.以下五個(gè)寫法中:①{0}∈{0,1,2};②{1,2};③{0,1,2}={2,0,1};④0∈;⑤A∩=A,正確的個(gè)數(shù)有

  A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

  11.集合{1,2,3}的真子集的個(gè)數(shù)為

  A.5B.6C.7D.8

  12.已知3∈{1,a,a﹣2},則實(shí)數(shù)a的值為

  A.3B.5C.3或5D.無解

  13.已知集合A={﹣1,1},B={x|ax+2=0},若BA,則實(shí)數(shù)a的所有可能取值的集合為

  A.{﹣2}B.{2}C.{﹣2,2}D.{﹣2,0,2}

  14.設(shè)所有被4除余數(shù)為k(k=0,1,2,3)的整數(shù)組成的集合為Ak,即Ak={x|x=4n+k,n∈Z},則下列結(jié)論中錯(cuò)誤的是A.20xx∈A0B.﹣1∈A3C.a(chǎn)∈Ak,b∈Ak,則a﹣b∈A0D.a(chǎn)+b∈A3,則a∈A1,b∈A2

  二、填空題

  16.已知集合A={﹣1,3,2m﹣1},集合B={3,m2}.若BA,則實(shí)數(shù)m=.17.對于任意集合X與Y,定義:①X﹣Y={x|x∈X且xY},②X△Y=(X﹣Y)∪(Y﹣X),(X△Y稱為X與Y的對稱差).已知A={y|y=2x﹣1,x∈R},B={x|x2﹣9≤0},則A△B=.

  18.函數(shù)y=的定義域?yàn)锳,值域?yàn)锽,則A∩B=.

  19.若集合為{1,a,}={0,a2,a+b}時(shí),則a﹣b=.20.用M[A]表示非空集合A中的元素個(gè)數(shù),記|A﹣B|=,若A={1,2,3},B={x||x2﹣2x﹣3|=a},且|A﹣B|=1,則實(shí)數(shù)a的取值范圍為.

  三、解答題

  21.已知不等式x2+mx+3≤0的解集為A=[1,n],集合B={x|x2﹣ax+a≤0}.

 。1)求m﹣n的值;

 。2)若A∪B=A,求a的取值范圍.

  22.已知函數(shù)f(x)的定義域?yàn)椋?,4),函數(shù)g(x)=f(x+1)的定義域?yàn)榧螦,集合B={x|a<x<2a﹣1},若A∩B=B,求實(shí)數(shù)a的取值范圍.

  23.已知A={x|x2+x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A∪B=R,求a、b的值.24.已知集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},(UA)∩B={﹣2},求實(shí)數(shù)p、q、r的值.

  25.已知元素為實(shí)數(shù)的集合S滿足下列條件:①0S,1S;②若a∈S,則∈S.

 。á瘢┤魗2,﹣2}S,求使元素個(gè)數(shù)最少的集合S;

 。á颍┤舴强占蟂為有限集,則你對集合S的元素個(gè)數(shù)有何猜測?并請證明你的猜測正確.

  26.已知集合A={x|x2﹣3x﹣4≤0},B={x|x2﹣2mx+m2﹣9≤0},C={y|y=2x+b,x∈R}

 。1)若A∩B=[0,4],求實(shí)數(shù)m的值;

 。2)若A∩C=,求實(shí)數(shù)b的取值范圍;

  (3)若A∪B=B,求實(shí)數(shù)m的取值范圍.

  試卷答案

  1.A 2.D 3.C 4.B 5.B 6.C 7.D 8.D 9.C 10.B 11.C 12.B 13.D 14.D 16.1

  17.[﹣3,﹣1)∪(3,+∞)

  18.[0,2]

  19.﹣1

  20.0≤a<4或a>4

  21.(1)利用韋達(dá)定理,求出m,n,即可求m﹣n的值;

 。2)若A∪B=A,BA,分類討論求a的取值范圍.

  【解答】解:(1)∵不等式x2+mx+3≤0的解集為A=[1,n],

  ∴,∴m=﹣4,n=3,

  ∴m﹣n=﹣7;

 。2)A∪B=A,∴BA.

 、貰=,△=a2﹣4a<0,∴0<a<4;②B≠,設(shè)f(x)=x2﹣ax+a,則,∴4≤a≤,

  綜上所述,0<a≤.

  22.【解答】解:要使g(x)有意義,則:0<x+1<4,

  ∴﹣1<x<3,

  ∴A={x|﹣1<x<3};

  ∵A∩B=B,

  ∴BA;

 、偃鬊=,滿足BA,

  則a≥2a﹣1,解得a≤1;

 、谌鬊≠,則,

  解得1<a≤2;

  綜上,實(shí)數(shù)a的取值范圍是(﹣∞,2].

  23.【解答】解:集合A={x|x2+x>0}={x|x<﹣1或x>0}∴﹣1,2是方程x2+ax+b=0的兩個(gè)根,

  ∴a=﹣1,b=﹣2

  即a,b的值分別是﹣1,﹣2.

  24.【解答】解:集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},

  ∴1+p+1=0,解得p=﹣2;

  又1+q+r=0,①

 。║A)∩B={﹣2},

  ∴4﹣2q+r=0,②

  由①②組成方程組解得q=1,r=﹣2;

  ∴實(shí)數(shù)p=﹣2,q=1,r=﹣2.

  本題考查了集合的定義與應(yīng)用問題,是基礎(chǔ)題目.

  25.【解答】解:(Ⅰ)2∈S,則﹣1∈S,∈S,可得2∈S;﹣2∈S,則∈S,∈S,可得﹣2∈S,

  ∴{2,﹣2}S,使元素個(gè)數(shù)最少的集合S為{2,﹣1,,﹣2,,}.

 。á颍┓强沼邢藜疭的元素個(gè)數(shù)是3的倍數(shù).

  證明如下:

 。1)設(shè)a∈S則a≠0,1且a∈S,則∈S,=∈S,=a∈S

  假設(shè)a=,則a2﹣a+1=0(a≠1)m無實(shí)數(shù)根,故a≠.

  同理可證a,,兩兩不同.

  即若有a∈S,則必有{a,,}S.

 。2)若存在b∈S(b≠a),必有{b,,}S.{a,,}∩{b,,}=.

  于是{a,,,b,,}S.

  上述推理還可繼續(xù),由于S為有限集,故上述推理有限步可中止,

  ∴S的元素個(gè)數(shù)為3的倍數(shù).

  26.【解答】解:(1)由A中不等式變形得:(x﹣4)(x+1)≤0,

  解得:﹣1≤x≤4,即A=[﹣1,4];

  由B中不等式變形得:(x﹣m+3)(x﹣m﹣3)≤0,

  解得:m﹣3≤x≤m+3,即B=[m﹣3,m+3],

  ∵A∩B=[0,4],

  ∴,

  解得:m=3;

 。2)∵由C中y=2x+b>b,x∈R,得到C=(b,+∞),且A∩C=,A=[﹣1,4],

  ∴實(shí)數(shù)b的范圍為b≥4;

  (3)∵A∪B=B,

  ∴AB,

  ∴,

  解得:1≤m≤2.

必修一數(shù)學(xué)總結(jié)9

  圓錐曲線性質(zhì):

  一、圓錐曲線的定義

  1.橢圓:到兩個(gè)定點(diǎn)的距離之和等于定長(定長大于兩個(gè)定點(diǎn)間的距離)的動(dòng)點(diǎn)的軌跡叫做橢圓.

  2.雙曲線:到兩個(gè)定點(diǎn)的距離的差的絕對值為定值(定值小于兩個(gè)定點(diǎn)的`距離)的動(dòng)點(diǎn)軌跡叫做雙曲線.即.

  3.圓錐曲線的統(tǒng)一定義:到定點(diǎn)的距離與到定直線的距離的比e是常數(shù)的點(diǎn)的軌跡叫做圓錐曲線.當(dāng)01時(shí)為雙曲線.

  二、圓錐曲線的方程

  1.橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)

  2.雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)

  3.拋物線:y2=±2px(p>0),x2=±2py(p>0)

  三、圓錐曲線的性質(zhì)

  1.橢圓:+=1(a>b>0)

  (1)范圍:|x|≤a|y|≤b(2)頂點(diǎn):(±a,0),(0,±b)(3)焦點(diǎn):(±c,0)(4)離心率:e=∈(0,1)(5)準(zhǔn)線:x=±

  2.雙曲線:-=1(a>0,b>0)(1)范圍:|x|≥a,y∈R(2)頂點(diǎn):(±a,0)(3)焦點(diǎn):(±c,0)(4)離心率:e=∈(1,+∞)(5)準(zhǔn)線:x=±(6)漸近線:y=±x

  3.拋物線:y2=2px(p>0)(1)范圍:x≥0,y∈R(2)頂點(diǎn):(0,0)(3)焦點(diǎn):(,0)(4)離心率:e=1(5)準(zhǔn)線:x=-

必修一數(shù)學(xué)總結(jié)10

  幾何體和體積具有柱、錐、臺、球的結(jié)構(gòu)特征

  (1)棱柱:

  幾何特征:兩個(gè)底面是平行于對應(yīng)邊的全等多邊形;側(cè)面和對角為平行四邊形;側(cè)邊平行相等;平行于底面的截面是與底面相等的多邊形.

  (2)棱錐

  幾何特征:側(cè)面和對角為三角形;平行于底面的截面與底面相似,相似比等于從頂點(diǎn)到截面距離和高比的平方.

  (3)棱臺:

  幾何特征:上下底面是相似的平行多邊形側(cè)面是梯形側(cè)邊交給原棱錐的頂點(diǎn)

  (4)圓柱:定義:以矩形一側(cè)所在的直線為軸旋轉(zhuǎn),其側(cè)旋轉(zhuǎn)

  幾何特征:底面為全等圓;母線與軸平行;軸垂直于底圓的半徑;側(cè)展圖為矩形.

  (5)圓錐:定義:旋轉(zhuǎn)軸以直角三角形的直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周

  幾何特征:底面為圓;母線交于圓錐的頂點(diǎn);側(cè)展圖為扇形.

  (6)圓臺:定義:旋轉(zhuǎn)軸以垂直直角梯形和底部腰部為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周

  幾何特征:上下底面有兩個(gè)圓;側(cè)母線交給原圓錐的頂點(diǎn);側(cè)展圖為弓形.

  (7)球體:定義:以半圓直徑直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:球的截面是圓的;球面上任何一點(diǎn)到球心的距離等于半徑.

  2.空間幾何三視圖

  定義三個(gè)視圖:正視圖(光線從幾何前面投影到后面);側(cè)視圖(從左到右)

  俯視圖(從上到下)

  注:正視圖反映物體的高度和長度;俯視圖反映物體的長度和寬度;側(cè)視圖反映物體的高度和寬度.

  3.空間幾何直觀圖-斜二測繪法

  斜二測繪法特點(diǎn):與x軸平行的線段仍與x平行,長度不變;

  與y軸平行的線段仍與y平行,長度為原來的一半.

  4.柱、錐、臺的表面積和體積

  (1)幾何體的表面積是幾何體各個(gè)面積的和.

  (2)特殊幾何體表面積公式(c底部周長,h為高,為斜高,l為母線)

  (3)柱、錐、臺的體積公式

  總結(jié)高中數(shù)學(xué)必修二知識點(diǎn):直線和方程

  (1)直線傾斜角

  定義:x軸向和直線向上方向之間的角稱為直線傾斜角.特別是當(dāng)直線與x軸平行或重合時(shí),我們將其傾斜角設(shè)置為0度.因此,傾斜角的值范圍為0°≤α<180°

  (2)直線斜率

  定義:傾斜角不是90°直線,傾斜角的正切稱為直線的斜率.直線斜率常用k表示.即.斜率反映了直線和軸的傾斜程度.

  當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.

  兩點(diǎn)以上的直線斜率公式:

  注意以下四點(diǎn):(1)當(dāng)時(shí)公式右側(cè)毫無意義,直線斜率不存在,傾斜角90°;

  (2)k與P1、P2的順序無關(guān);(3)以后求斜率可以通過直線上兩點(diǎn)的坐標(biāo)直接獲得,而不是傾斜角;

  (4)直線上兩點(diǎn)的坐標(biāo)先求斜率可以獲得直線的.傾斜角.

  (3)直線方程

  點(diǎn)斜:直線斜率k,且過點(diǎn)

  注:當(dāng)直線的斜率為0時(shí)°時(shí),k=直線方程為y=y1.

  當(dāng)直線的斜率為90時(shí)°當(dāng)直線斜率不存在時(shí),其方程不能用點(diǎn)斜表示.但是l上的每一個(gè)橫坐標(biāo)都等于x所以它的方程是x=x1.

  斜截:,直線斜率為k,Y軸上直線的截距為b

  兩點(diǎn)式:()直線兩點(diǎn),截矩式:

  直線與軸交點(diǎn),與軸交點(diǎn),即與軸和軸的截距.

  一般式:(A,B不全為0)

  注:各種適用范圍的特殊方程,如:

  (4)平行于x軸的直線:(b為常數(shù));與y軸平行的直線:(a為常數(shù));

  (5)直線系方程:即具有一定共同性質(zhì)的直線

  (一)平行直線系

  直線系統(tǒng)平行于已知直線(不全為0):(C為常數(shù))

  (二)垂直線系

  直線系垂直于已知直線(不全為0的常數(shù)):(C為常數(shù))

  (3)直線系過定點(diǎn)

  ()直線系斜率為k:,直線過定點(diǎn);

  ()有兩條直線,交點(diǎn)的直線系方程為

  (參數(shù))直線不在直線系中.

  (6)兩條直線平行垂直

  注:利用斜率判斷直線的平行和垂直時(shí),應(yīng)注意斜率的存在.

  (7)兩條直線的交點(diǎn)

  相交

  交點(diǎn)坐標(biāo)是方程組的一組解.

  方程組無解;方程組有無數(shù)的解和重疊

  (8)兩點(diǎn)間距公式:平面直角坐標(biāo)系中的兩點(diǎn)

  (9)點(diǎn)到直線距離公式:點(diǎn)到直線的距離

  (10)兩平行直線距離公式

  在任何一條直線上任取一點(diǎn),然后轉(zhuǎn)化為點(diǎn)到直線的距離求解。

必修一數(shù)學(xué)總結(jié)11

  這學(xué)期我擔(dān)任高一7、8兩個(gè)普通班的數(shù)學(xué)教學(xué)工作。深入研究教法,經(jīng)過一個(gè)學(xué)期的努力,獲取了很多寶貴的教學(xué)經(jīng)驗(yàn)。以下是我在本學(xué)期的教學(xué)情況總結(jié):

  教學(xué)就是教與學(xué),兩者是相互聯(lián)系,不可分割的,有教者就必然有學(xué)者。學(xué)生是被教的主體。因此,了解和分析學(xué)生情況,有針對地教對教學(xué)成功與否至關(guān)重要。一方面,從學(xué)生基礎(chǔ)來看,學(xué)生底子,另一方面,上課比較活躍,上課氣氛非常積極,但中等生、差等生占較大的比例,尖子生相對比較少。因此,講得太深,沒有照顧到整體,我備課時(shí)也沒有注意到這點(diǎn),因此教學(xué)效果不是很理想。從此可以看出,了解及分析學(xué)生實(shí)際情況,實(shí)事求是,具體問題具體分析,做到因材施教,對授課效果有直接影響,這根提高數(shù)學(xué)高效課堂有很大的關(guān)系。這就是教育學(xué)中提到的“備教法的同時(shí)要備學(xué)生”。這一理論在我的教學(xué)實(shí)踐中得到了驗(yàn)證。

  教學(xué)中,備課是一個(gè)必不可少,十分重要的環(huán)節(jié),備學(xué)生,又要備教法。備課不充分或備得不好,會(huì)嚴(yán)重影響課堂氣氛和積極性,曾有一位前輩對我說:“備課備不好,倒不如不上課,否則就是白費(fèi)心機(jī)”。我明白到備課的重要性,因此,每天我都花費(fèi)大量的時(shí)間在備課之上,認(rèn)認(rèn)真真鉆研教材和教法,不滿意就不收工。雖然辛苦,但事實(shí)證明是值得的。

  一堂準(zhǔn)備充分的課,會(huì)令學(xué)生和老師都獲益不淺。如果照本宣科地講授,學(xué)生會(huì)感到困難和沉悶。為了上好這堂課,我認(rèn)真研究了教材,找出了重點(diǎn),難點(diǎn),準(zhǔn)備有針對性地講。為了令教學(xué)生動(dòng),不沉悶,我還為此準(zhǔn)備了大量的比較感興趣的事例和教具,授課時(shí)就胸有成竹了。

  備課充分,能調(diào)動(dòng)學(xué)生的積極性,上課效果就好。但同時(shí)又要有駕馭課堂的能力,因?yàn)閷W(xué)生在課堂上的一舉一動(dòng)都會(huì)直接影響課堂教學(xué)。因此上課一定要設(shè)法令學(xué)生投入,不讓其分心,這就很講究方法了。上課內(nèi)容豐富,現(xiàn)實(shí)。教態(tài)自然,講課生動(dòng),難易適中照顧全部,就自然能夠吸引住學(xué)生。所以,老師每天都要有充足的精神,讓學(xué)生感受到一種自然氣氛。這樣,授課就事半功倍。回看自己的授課,我感到有點(diǎn)愧疚,因?yàn)橛袝r(shí)我并不能很好地做到這點(diǎn)。當(dāng)學(xué)生在課堂上無心向?qū)W,違反紀(jì)律時(shí),我的情緒就受到影響,并且把這帶到教學(xué)中,讓原本正常的講課受到?jīng)_擊,發(fā)揮不到應(yīng)有的'水平,以致影響教學(xué)效果。我以后必須努力克服,研究方法,采取有利方法解決當(dāng)中困難。

  數(shù)學(xué)是一門工具學(xué)科,對學(xué)生而言,既熟悉又困難,在這樣一種大環(huán)境之下,要教好數(shù)學(xué),就要讓學(xué)生喜愛數(shù)學(xué),讓他們對數(shù)學(xué)產(chǎn)生興趣。否則學(xué)生對這門學(xué)科產(chǎn)生畏難情緒,不愿學(xué),也無法學(xué)下去。為此,我采取了一些方法,就是盡量多講一些笑話和數(shù)學(xué)典故,讓他們更了解數(shù)學(xué),更喜歡學(xué)習(xí)數(shù)學(xué)。只有激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的樂趣,才能提高同學(xué)們的解題能力,對成績優(yōu)秀的同學(xué)很有好處。

  因?yàn)閿?shù)學(xué)的特殊情況,學(xué)生在不斷學(xué)習(xí)中,會(huì)出現(xiàn)好差兩極分化的現(xiàn)象,差生面擴(kuò)大,會(huì)嚴(yán)重影響班內(nèi)的學(xué)習(xí)風(fēng)氣。因此,絕對不能忽視。為此,我制定了具體的計(jì)劃和目標(biāo)。對這部分同學(xué)進(jìn)行有計(jì)劃的輔導(dǎo)。數(shù)學(xué)是語言。困此,除了課堂效果之外,還需要讓學(xué)生多想,多練。為此,在自修時(shí),我堅(jiān)持下班了解自修情況,發(fā)現(xiàn)問題及時(shí)糾正。課后發(fā)現(xiàn)學(xué)生作業(yè)問題也及時(shí)解決,及時(shí)講清楚,讓學(xué)生即時(shí)消化。另外,對部分不自覺的同學(xué)還采取扎實(shí)基礎(chǔ)的方式,先打?qū)嵥麄兊幕A(chǔ),然后想辦法提高他們的能力。

  由于經(jīng)驗(yàn)頗淺,許多地方存在不足,希望在未來的日子里,能在學(xué)校領(lǐng)導(dǎo)老師、前輩們的指導(dǎo)下,取得更好成績。

必修一數(shù)學(xué)總結(jié)12

  空間中直線與平面、平面與平面之間的位置關(guān)系

  1、直線與平面有三種位置關(guān)系:

 。1)直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)

  (2)直線與平面相交——有且只有一個(gè)公共點(diǎn)

 。3)直線在平面平行——沒有公共點(diǎn)

  指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來表示aαa∩α=Aa∥α

  2、直線、平面平行的判定及其性質(zhì)

 。1)直線與平面平行的判定

  (2)直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。

  簡記為:線線平行,則線面平行。

  集合的分類

  (1)按元素屬性分類,如點(diǎn)集,數(shù)集。

 。2)按元素的個(gè)數(shù)多少,分為有/無限集

  關(guān)于集合的概念:

  (1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個(gè)集合,任何一個(gè)對象是不是這個(gè)集合的元素也就確定了。

  (2)互異性:對于一個(gè)給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個(gè)元素都是不同的對象,相同的對象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。

 。3)無序性:判斷一些對象時(shí)候構(gòu)成集合,關(guān)鍵在于看這些對象是否有明確的'標(biāo)準(zhǔn)。

  集合可以根據(jù)它含有的元素的個(gè)數(shù)分為兩類:

  含有有限個(gè)元素的集合叫做有限集,含有無限個(gè)元素的集合叫做無限集。

  非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N;

  在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N—;

  整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z;

  有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)

  實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的點(diǎn)一一對應(yīng)的數(shù)。)

必修一數(shù)學(xué)總結(jié)13

  一、集合有關(guān)概念

  1. 集合的含義

  2. 集合的中元素的三個(gè)特性:

  (1) 元素的確定性,(2) 元素的互異性,(3) 元素的無序性,3.集合的表示:{ … } 如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

  (1) 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  (2) 集合的表示方法:列舉法與描述法。

  ? 注意:常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集) 記作:N

  正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R

  1) 列舉法:{a,b,c……}

  2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

  3) 語言描述法:例:{不是直角三角形的三角形}

  4) Venn圖:

  4、集合的分類:

  (1) 有限集 含有有限個(gè)元素的集合

  (2) 無限集 含有無限個(gè)元素的集合

  (3) 空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)

  實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

  即:① 任何一個(gè)集合是它本身的子集。A?A

 、谡孀蛹:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)

 、廴绻 A?B, B?C ,那么 A?C

 、 如果A?B 同時(shí) B?A 那么A=B

  3. 不含任何元素的集合叫做空集,記為Φ

  規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  ? 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

  三、集合的運(yùn)算

  運(yùn)算類型 交 集 并 集 補(bǔ) 集

  定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

  由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

  設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

  二、函數(shù)的有關(guān)概念

  1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.

  注意:

  1.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。

  求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

  (1)分式的分母不等于零;

  (2)偶次方根的被開方數(shù)不小于零;

  (3)對數(shù)式的真數(shù)必須大于零;

  (4)指數(shù)、對數(shù)式的底必須大于零且不等于1.

  (5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合.

  (6)指數(shù)為零底不可以等于零,(7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.

  相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致 (兩點(diǎn)必須同時(shí)具備)

  2.值域 : 先考慮其定義域

  (1)觀察法

  (2)配方法

  (3)代換法

  3. 函數(shù)圖象知識歸納

  (1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(diǎn)(x,y),均在C上 .

  (2) 畫法

  A、 描點(diǎn)法:

  B、 圖象變換法

  常用變換方法有三種

  1) 平移變換

  2) 伸縮變換

  3) 對稱變換

  4.區(qū)間的概念

  (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

  (2)無窮區(qū)間

  (3)區(qū)間的數(shù)軸表示.

  5.映射

  一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應(yīng)法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:A B為從集合A到集合B的一個(gè)映射。記作f:A→B

  6.分段函數(shù)

  (1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

  (2)各部分的自變量的取值情況.

  (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

  補(bǔ)充:復(fù)合函數(shù)

  如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復(fù)合函數(shù)。

  二.函數(shù)的性質(zhì)

  1.函數(shù)的單調(diào)性(局部性質(zhì))

  (1)增函數(shù)

  設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1

  如果對于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的.單調(diào)減區(qū)間.

  注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

  (2) 圖象的特點(diǎn)

  如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的

  (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

  (A) 定義法:

  ○1 任取x1,x2∈D,且x1

  ○2 作差f(x1)-f(x2);

  ○3 變形(通常是因式分解和配方);

  ○4 定號(即判斷差f(x1)-f(x2)的正負(fù));

  ○5 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

  (B)圖象法(從圖象上看升降)

  (C)復(fù)合函數(shù)的單調(diào)性

  復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

  注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

  8.函數(shù)的奇偶性(整體性質(zhì))

  (1)偶函數(shù)

  一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

  (2).奇函數(shù)

  一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

  (3)具有奇偶性的函數(shù)的圖象的特征

  偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱.

  利用定義判斷函數(shù)奇偶性的步驟:

  ○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對稱;

  ○2確定f(-x)與f(x)的關(guān)系;

  ○3作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).

  (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

  (3)利用定理,或借助函數(shù)的圖象判定 .

  9、函數(shù)的解析表達(dá)式

  (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.

  (2)求函數(shù)的解析式的主要方法有:

  1) 湊配法

  2) 待定系數(shù)法

  3) 換元法

  4) 消參法

  10.函數(shù)最大(小)值(定義見課本p36頁)

  ○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值

  ○2 利用圖象求函數(shù)的最大(小)值

  ○3 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:

  如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);

  如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

必修一數(shù)學(xué)總結(jié)14

  二次函數(shù)

  I.定義與定義表達(dá)式

  一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

  (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

  則稱y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

  II.二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

  頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函數(shù)的圖像

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

  IV.拋物線的`性質(zhì)

  1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

  P(-b/2a,(4ac-b^2)/4a)

  當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

  3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

  |a|越大,則拋物線的開口越小。

必修一數(shù)學(xué)總結(jié)15

  1.函數(shù)知識:基本初等函數(shù)性質(zhì)的考查,以導(dǎo)數(shù)知識為背景的函數(shù)問題;以向量知識為背景的函數(shù)問題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。

  2.向量知識:向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運(yùn)算律;考查平面向量的坐標(biāo)運(yùn)算;考查平面向量與幾何、三角、代數(shù)等學(xué)科的綜合性問題。

  3.不等式知識:突出工具性,淡化獨(dú)立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來,考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識為背景,在知識網(wǎng)絡(luò)的交匯處命題,綜合性強(qiáng),能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起?疾閷W(xué)生的等價(jià)轉(zhuǎn)化能力和分類討論能力;以當(dāng)前經(jīng)濟(jì)、社會(huì)生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點(diǎn),主要考查學(xué)生閱讀理解能力以及分析問題、解決問題的能力。

  4.立體幾何知識:2016年已經(jīng)變得簡單,2017年難度依然不大,基本的三視圖的`考查難點(diǎn)不大,以及球與幾何體的組合體,涉及切,接的問題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的體積計(jì)算等問題,都是重點(diǎn)考查內(nèi)容。

  5.解析幾何知識:小題主要涉及圓錐曲線方程,和直線與圓的位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標(biāo)下的解析幾何知識,解答題主要考查直線和圓的知識,直線與圓錐曲線的知識,涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點(diǎn),定值,范圍的考查,考試的難度降低。

  6.導(dǎo)數(shù)知識:導(dǎo)數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導(dǎo)數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強(qiáng),能力要求高;往往與公式、導(dǎo)數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點(diǎn)整體偏低。

  7.開放型創(chuàng)新題:答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點(diǎn),理科13,文科14題。

【必修一數(shù)學(xué)總結(jié)】相關(guān)文章:

高一數(shù)學(xué)必修一知識點(diǎn)總結(jié)05-19

數(shù)學(xué)必修三知識點(diǎn)總結(jié)11-24

必修5數(shù)學(xué)知識點(diǎn)總結(jié)12-06

必修一化學(xué)知識點(diǎn)總結(jié)12-15

必修生物一知識點(diǎn)總結(jié)11-25

生物必修一知識點(diǎn)總結(jié)07-20

高一歷史必修一知識點(diǎn)總結(jié)07-19

高中數(shù)學(xué)必修2知識點(diǎn)總結(jié)11-22

【優(yōu)選】生物必修一知識點(diǎn)總結(jié)07-20

必修一必修二生物知識點(diǎn)03-01